已知函數(shù)y=ax2+bx+c的圖象如圖所示,那么關(guān)于x的方程ax2+bx+c+2=0的根的情況是(   )
A.無(wú)實(shí)數(shù)根B.有兩個(gè)相等實(shí)數(shù)根
C.有兩個(gè)異號(hào)實(shí)數(shù)根D.有兩個(gè)同號(hào)不等實(shí)數(shù)根
D

試題分析:觀察圖象可得拋物線的最低點(diǎn)的縱坐標(biāo)為-3,由ax2+bx+c+2=0可得ax2+bx+c=-2即得結(jié)果.
由圖可得拋物線的最低點(diǎn)的縱坐標(biāo)為-3
由ax2+bx+c+2=0可得ax2+bx+c=-2
則方程ax2+bx+c+2=0有兩個(gè)同號(hào)不等實(shí)數(shù)根
故選D.
點(diǎn)評(píng):解題的關(guān)鍵是由ax2+bx+c+2=0得到ax2+bx+c=-2,再結(jié)合圖象特征進(jìn)行分析.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,直角梯形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=AB=2,OC=3,過點(diǎn)B作BD⊥BC,交OA于點(diǎn)D.將∠DBC繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn),角的兩邊分別交y軸的正半軸、x軸的正半軸于點(diǎn)E和F.

(1)求經(jīng)過A、B、C三點(diǎn)的拋物線的解析式;
(2)當(dāng)BE經(jīng)過(1)中拋物線的頂點(diǎn)時(shí),求CF的長(zhǎng);
(3)在拋物線的對(duì)稱軸上取兩點(diǎn)P、Q(點(diǎn)Q在點(diǎn)P的上方),且PQ=1,要使四邊形BCPQ的周長(zhǎng)最小,請(qǐng)直接寫出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,Rt△ABC中,AC=BC=8,∠ACB=90º,直角邊AC在x軸上,B點(diǎn)在第二象限,A(2,0),AB交y軸于E,將紙片過E點(diǎn)折疊使BE與EA所在直線重合,得到折痕EF(F在x軸上),再展開還原沿EF剪開得到四邊形BCFE,然后把四邊形BCFE從E點(diǎn)開始沿射線EA平移,至B點(diǎn)到達(dá)A點(diǎn)停止.設(shè)平移時(shí)間為t(s),移動(dòng)速度為每秒1個(gè)單位長(zhǎng)度,平移中四邊形B1C1F1E1與△AEF重疊的面積為S.

(1)求折痕EF的長(zhǎng);
(2)直接寫出S與t的函數(shù)關(guān)系式及自變量t的取 值范圍.
(3)若四邊形BCFE平移時(shí),另有一動(dòng)點(diǎn)H與四邊形BCFE同時(shí)出發(fā),以每秒個(gè)單位長(zhǎng)度從點(diǎn)A沿射線AC運(yùn)動(dòng),試求出當(dāng)t為何值時(shí),△HE1E為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:拋物線y1=-2x2+2與直線y2=2x+2相交
點(diǎn)A和點(diǎn)B,

(1)求出點(diǎn)A和點(diǎn)B的坐標(biāo)。
(2)觀察圖象,請(qǐng)直接寫出y1>y2的自變量x的取值范圍。
(3)當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1、y2.若y1≠y2,
取y1、y2中的較小值記為M;若y1=y2,記M= y1=y2.(例如:當(dāng)x=1時(shí),y1=0,y2=4,y1<y2,此時(shí)M=0.) 求:使得M=1的x值。=】

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

拋物線經(jīng)過兩點(diǎn),與軸交于另一點(diǎn)

(1)求拋物線的解析式;
(2)已知點(diǎn)在第二象限的拋物線上,求點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo);
(3)在(2)的條件下,連接,點(diǎn)為y軸
上一點(diǎn),且,求出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)時(shí),只在時(shí)取得最大值, 則實(shí)數(shù)的取值范圍是      

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,甲、乙兩人進(jìn)行羽毛球比賽,甲發(fā)出一顆十分關(guān)鍵的球,出手點(diǎn)為P,羽毛球距地面高度h(米)與其飛行的水平距離s(米)之間的關(guān)系式為.若球網(wǎng)AB距原點(diǎn)5米,乙(用線段CD表示)扣球的最大高度為2.25米,

(1)羽毛球的出手點(diǎn)高度為__________米;
(2)設(shè)乙的起跳點(diǎn)C的橫坐標(biāo)為m,若乙原地起跳,因球的高度高于乙扣球的最大高度而導(dǎo)致接失敗,則m取值范圍是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

二次函數(shù)的最大值是          

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)y= x2 +4x+3.

(1)用配方法將y= x2 +4x+3化成y=a (x-h) 2 +k的形式;
(2)在平面直角坐標(biāo)系中,畫出這個(gè)二次函數(shù)的圖象;
(3)寫出當(dāng)x為何值時(shí),y>0.

查看答案和解析>>

同步練習(xí)冊(cè)答案