如圖1,是邊長分別為4和3的兩個等邊三角形紙片ABC和CD′E′疊放在一起.
(1)操作:固定△ABC,將△CD′E′繞點C順時針旋轉(zhuǎn)得到△CDE,連接AD、BE,如圖2.探究:在圖2中,線段BE與AD之間有怎樣的大小關(guān)系?試說明理由;
(2)操作:固定△ABC,若將△CD′E′繞點C順時針旋轉(zhuǎn)30°得到△CDE,連接AD、BE,CE的延長線交AB于點F,在線段CF上沿著CF方向以每秒1個單位長的速度平移,平移后的△CDE設(shè)為△PQR,如圖3.探究:在圖3中,除△ABC和△CDE外,還有哪個三角形是等腰三角形?寫出你的結(jié)論并說明理由;
(3)探究:如圖4,在(2)的條件下,將△PQR的頂點P移動至F點,求此時QH的長度.

解:(1)BE=AD
證明:由題意可得,BC=AC,CE=CD,
∵∠BCE+∠ACE=60°∠ACE+∠ACD=60°
∴∠BCE=∠ACD,
∴△BCE≌△ACD,
∴BE=AD.

(2)△HQC為等腰三角形
證明:因為∠FCB=30°,
所以∠ACF=30°,
又因為∠RQP=60°,
所以∠QHC=∠HCQ=30°,
所以△HQC為等腰三角形;

(3)由題意得,AF=2,在Rt△AFG中,F(xiàn)G=,所以GR=3-,
在Rt△GRH中,RH=2(3-),
所以HQ=3-2(3-)=2-3
分析:(1)求兩條線段之間的關(guān)系,可先證明△BCE≌△ACD,進而得出兩條線之間的關(guān)系.
(2)等腰三角形的判定問題,可根據(jù)題中角之間的關(guān)系進行判斷.
(3)簡單的計算問題,在直角三角形中,利用勾股定理求解即可.
點評:本題考查了等腰三角形的性質(zhì)及判定定理軸對稱的性質(zhì)及平移的性質(zhì);進行角的等量代換是正確解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,是邊長分別為4和3的兩個等邊三角形紙片ABC和CD′E′疊放在一起.
(1)操作:固定△ABC,將△CD′E′繞點C順時針旋轉(zhuǎn)得到△CDE,連接AD、BE,如圖2.探究:在圖2中,線段BE與AD之間有怎樣的大小關(guān)系?試說明理由;
(2)操作:固定△ABC,若將△CD′E′繞點C順時針旋轉(zhuǎn)30°得到△CDE,連接AD、BE,CE的延長線交AB于點F,在線段CF上沿著CF方向以每秒1個單位長的速度平移,平移后的△CDE設(shè)為△PQR,如圖3.探究:在圖3中,除△ABC和△CDE外,還有哪個三角形是等腰三角形?寫出你的結(jié)論并說明理由;
(3)探究:如圖4,在(2)的條件下,將△PQR的頂點P移動至F點,求此時QH的長度.精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,是邊長分別為6和4的兩個等邊三角形紙片ABC和CD1E1疊放在一起.
(1)操作:固定△ABC,將△CD1E1繞點C順時針旋轉(zhuǎn)得到△CDE,連接AD、BE,如圖2.探究:在圖2中,線段BE與AD之間有怎樣的大小關(guān)系?并請說明理由;
(2)操作:固定△ABC,若將△CD1E1繞點C順時針旋轉(zhuǎn)30°得到△CDE,連接AD、BE,CE的延長線交AB于點F,在線段CF上沿著CF方向平移,(點F與點P重合即停止平移)平移后的△CDE設(shè)為△PQR,如圖3.
探究:在圖3中,除三角形ABC和CDE外,還有哪個三角形是等腰三角形?寫出你的結(jié)論(不必說明理由);
(3)探究:如圖3,在(2)的條件下,設(shè)CQ=x,用x代數(shù)式表示出GH的長.    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1+1輕巧奪冠·優(yōu)化訓(xùn)練(冀教版)七年級數(shù)學(xué)(下) 冀教版銀版 題型:044

如圖所示是邊長分別為:2a+b,a+b,a-b的長方體.

(1)求它的體積.

(2)求它的表面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙江紹興楊汛橋鎮(zhèn)中學(xué)八年級上單元檢測數(shù)學(xué)試題(帶解析) 題型:解答題

如圖1,是邊長分別為5和2的兩個等邊三角形紙片ABC和CDˊEˊ疊放在一起.
(1)操作:固定△ABC,將△CDˊEˊ繞點C順時針旋轉(zhuǎn)得到△CDE,連結(jié)AD、BE,如圖2.探究:在圖2中,線段BE與AD之間有怎樣的大小關(guān)系?試說明理由;
(2)操作:固定△ABC,若將△CDˊEˊ繞點C順時針旋轉(zhuǎn)30°得到△CDE,連結(jié)AD、BE,CE的延長線交AB于點F,在線段CF上沿著CF方向以每秒1個單位長的速度平移,平移后的△CDE設(shè)為△PQR,如圖3.探究:在圖3中,除△ABC和△PQR外,還有哪個三角形是等腰三角形?寫出你的結(jié)論并說明理由;
(3)探究:如圖3,在(2)的條件下,設(shè)△PQR移動的時間為1秒,求△PQR與△AFC重疊部分的面積。

查看答案和解析>>

同步練習(xí)冊答案