拋物線y=+x-2的頂點(diǎn)坐標(biāo)是

[  ]

A.(0,-2)
B.(-1,2)
C.(,-2)
D.()
答案:D
解析:

由二次函數(shù)頂點(diǎn)坐標(biāo)公式x=,y=

∴把a(bǔ)=1,b=1,c=-2代入得:

x=,y=

∴選D


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如果拋物線y=x2-mx+m+3的頂點(diǎn)在x軸上,那么m=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知y=
1
2
x2+px+q
(q≠0)與直線y=x交于A、B兩點(diǎn),與y軸交于點(diǎn)C,OA精英家教網(wǎng)=BO,BC∥x軸.
(1)求p和q的值;
(2)設(shè)D、E是線段AB上異于A、B的兩個(gè)動(dòng)點(diǎn)(點(diǎn)E在點(diǎn)D的右上方),DE=
2
,過D作y軸的平行線,交拋物線于F.
①設(shè)點(diǎn)D的橫坐標(biāo)為t,△EDF的面積為S,求S與t之間的函數(shù)關(guān)系式及自變量t的取值范圍;
②又過點(diǎn)E作y軸的平行線,交拋物線于G,試問能不能適當(dāng)選擇點(diǎn)D的位置,使四邊形DFGE是平行四邊形?如果能,求出此時(shí)點(diǎn)D的坐標(biāo);如果不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=ax2-5ax+4經(jīng)過△ABC的三個(gè)頂點(diǎn),已知BC∥x軸,點(diǎn)A在x軸上,點(diǎn)C在y軸上,且AC=BC.
(1)求拋物線的對(duì)稱軸;
(2)寫出A,B,C三點(diǎn)的坐標(biāo)并求拋物線的解析式;
(3)探究:若點(diǎn)P是拋物線對(duì)稱軸上且在x軸下方的動(dòng)點(diǎn),是否存在△PAB是等腰三角形?若存在,求出所有符合條件的點(diǎn)P坐標(biāo);不存在,請(qǐng)說明理由.
(4)在拋物線對(duì)稱軸上是否存在點(diǎn)M,使點(diǎn)M到點(diǎn)A和B的距離之差最大?若存在,直接寫出所有符合條件的點(diǎn)M坐標(biāo);不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•鄭州模擬)拋物線y=-x2和直線y=x-3交點(diǎn)的橫坐標(biāo)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寶安區(qū)二模)已知:如圖1,拋物線經(jīng)過點(diǎn)O、A、B三點(diǎn),四邊形OABC是直角梯形,其中點(diǎn)A在x軸上,點(diǎn)C在y軸上,BC∥OA,A(12,0)、B(4,8).
(1)求拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)若D為OA的中點(diǎn),動(dòng)點(diǎn)P自A點(diǎn)出發(fā)沿A→B→C→O的路線移動(dòng),速度為每秒1個(gè)單位,移動(dòng)時(shí)間記為t秒.幾秒鐘后線段PD將梯形OABC的面積分成1﹕3兩部分?并求出此時(shí)P點(diǎn)的坐標(biāo);
(3)如圖2,作△OBC的外接圓O′,點(diǎn)Q是拋物線上點(diǎn)A、B之間的動(dòng)點(diǎn),連接OQ交⊙O′于點(diǎn)M,交AB于點(diǎn)N.當(dāng)∠BOQ=45°時(shí),求線段MN的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案