(2013•安徽)已知二次函數(shù)圖象的頂點坐標為(1,-1),且經(jīng)過原點(0,0),求該函數(shù)的解析式.
分析:設(shè)二次函數(shù)的解析式為y=a(x-1)2-1(a≠0),然后把原點坐標代入求解即可.
解答:解:設(shè)二次函數(shù)的解析式為y=a(x-1)2-1(a≠0),
∵函數(shù)圖象經(jīng)過原點(0,0),
∴a(0-1)2-1=0,
解得a=1,
∴該函數(shù)解析式為y=(x-1)2-1.
點評:本題考查了待定系數(shù)法求二次函數(shù)解析式,利用頂點式解析式求解更加簡便.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•安徽模擬)如圖(1),P為△ABC所在平面上一點,且∠APB=∠BPC=∠CPA=120°,則點P叫做△ABC的費馬點.

(1)如點P為銳角△ABC的費馬點.且∠ABC=60°,PA=3,PC=4,求PB的長.
(2)如圖(2),在銳角△ABC外側(cè)作等邊△ACB′連結(jié)BB′.求證:BB′過△ABC的費馬點P,且BB′=PA+PB+PC.
(3)已知銳角△ABC,∠ACB=60°,分別以三邊為邊向形外作等邊三角形ABD,BCE,ACF,請找出△ABC的費馬點,并探究S△ABC與S△ABD的和,S△BCE與S△ACF的和是否相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•安徽)已知不等式組
x-3>0
x+1≥0
,其解集在數(shù)軸上表示正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•安徽)已知矩形紙片ABCD中,AB=1,BC=2.將該紙片折疊成一個平面圖形,折痕EF不經(jīng)過A點(E,F(xiàn)是該矩形邊界上的點),折疊后點A落在點A′處,給出以下判斷:
①當四邊形A′CDF為正方形時,EF=
2

②當EF=
2
時,四邊形A′CDF為正方形;
③當EF=
5
時,四邊形BA′CD為等腰梯形;
④當四邊形BA′CD為等腰梯形時,EF=
5

其中正確的是
①③④
①③④
(把所有正確結(jié)論的序號都填在橫線上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•安徽)如圖,已知A(-3,-3),B(-2,-1),C(-1,-2)是直角坐標平面上三點.
(1)請畫出△ABC關(guān)于原點O對稱的△A1B1C1
(2)請寫出點B關(guān)于y軸對稱的點B2的坐標,若將點B2向上平移h個單位,使其落在△A1B1C1內(nèi)部,指出h的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案