丁丁推鉛球的出手高度為1.6m,在如圖所示的拋物線y=-0.1(x-k)2+2.5上,求鉛球的落點(diǎn)與丁丁的距離.
由題意知,點(diǎn)(0,1.6)在拋物線y=-0.1(x-k)2+2.5上,
所以1.6=-0.1(0-k)2+2.5,
解這個(gè)方程,得k=3或k=-3(舍去),
所以,該拋物線的解析式為:
y=-0.1(x-3)2+2.5,(3分)
當(dāng)y=0時(shí),有-0.1(x-3)2+2.5=0,
解得x1=8,x2=-2(舍去),(5分)
所以,鉛球的落點(diǎn)與丁丁的距離為8m.(6分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知二次函數(shù)y=-x2+bx+c(c>0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,且OB=OC=3,頂點(diǎn)為M.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)P為線段BM上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線PQ,垂足為Q,若OQ=m,四邊形ACPQ的面積為S,求S關(guān)于m的函數(shù)解析式,并寫(xiě)出m的取值范圍;
(3)探索:線段BM上是否存在點(diǎn)N,使△NMC為等腰三角形?如果存在,求出點(diǎn)N的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

某市舉行釣魚(yú)比賽,如圖,選手甲釣到了一條大魚(yú),魚(yú)竿被拉彎近似可看作以A為最高點(diǎn)的一條拋物線,魚(yú)線AB長(zhǎng)6m,魚(yú)隱約在水面了,估計(jì)魚(yú)離魚(yú)竿支點(diǎn)有8m,此時(shí)魚(yú)竿魚(yú)線呈一個(gè)平面,且與水平面夾腳α恰好為60°,以魚(yú)竿支點(diǎn)為原點(diǎn),則魚(yú)竿所在拋物線的解析式為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

暑假期間,北關(guān)中學(xué)對(duì)網(wǎng)球場(chǎng)進(jìn)行了翻修,在水平地面點(diǎn)A處新增一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行線路是一條拋物線(如圖所示),在地面上落點(diǎn)為B.有同學(xué)在直線AB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放無(wú)蓋的圓柱形桶,試圖讓網(wǎng)球落入桶內(nèi),已知AB=4m,AC=3m,網(wǎng)球飛行最大高度OM=5m,圓柱形桶的直徑為0.5m,高為0.3m(網(wǎng)球的體積和圓柱形桶的厚度忽略不計(jì)),以M點(diǎn)為頂點(diǎn),拋物線對(duì)稱軸為y軸,水平地面為x軸建立平面直角坐標(biāo)系.
(1)請(qǐng)求出拋物線的解析式;
(2)如果豎直擺放5個(gè)圓柱形桶時(shí),網(wǎng)球能不能落入桶內(nèi)?
(3)當(dāng)豎直擺放圓柱形桶多少個(gè)時(shí),網(wǎng)球可以落入桶內(nèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知直線y=x與拋物線y=
1
2
x2
交于A、B兩點(diǎn).
(1)求交點(diǎn)A、B的坐標(biāo);
(2)記一次函數(shù)y=x的函數(shù)值為y1,二次函數(shù)y=
1
2
x2
的函數(shù)值為y2.若y1>y2,求x的取值范圍;
(3)在該拋物線上存在幾個(gè)點(diǎn),使得每個(gè)點(diǎn)與AB構(gòu)成的三角形為等腰三角形?并求出不少于3個(gè)滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,把矩形OCBA放置于直角坐標(biāo)系中,OC=3,BC=2,取AB的中點(diǎn)M,連結(jié)MC,把△MBC沿x軸的負(fù)方向平移OC的長(zhǎng)度后得到△DAO.
(1)直接寫(xiě)出點(diǎn)D的坐標(biāo);
(2)已知點(diǎn)B與點(diǎn)D在經(jīng)過(guò)原點(diǎn)的拋物線上,點(diǎn)P在第一象限內(nèi)的該拋物線上移動(dòng),過(guò)點(diǎn)P作PQ⊥x軸于點(diǎn)Q,連結(jié)OP.若以O(shè)、P、Q為頂點(diǎn)的三角形與△DAO相似,試求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知如圖,拋物線t=ax2+bx+c與x軸相交于B(1,0)、C(4,0)兩點(diǎn),與y軸的正半軸相交于A點(diǎn),過(guò)A、B、C三點(diǎn)的⊙P與y軸相切于點(diǎn)A,M為y軸負(fù)半軸上的一個(gè)動(dòng)點(diǎn),直線MB交拋物線于N,交⊙P于D.
(1)填空:A點(diǎn)坐標(biāo)是______,⊙P半徑的長(zhǎng)是______,a=______,b=______,c=______;
(2)若S△BNC:S△AOB=15:2,求N點(diǎn)的坐標(biāo);
(3)若△AOB與以A、B、D為頂點(diǎn)的三角形相似,求MB•MD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=
1
2
x2+mx+n交x軸于A、B兩點(diǎn),直線y=kx+b經(jīng)過(guò)點(diǎn)A,與這條拋物線的對(duì)稱軸交于點(diǎn)M(1,2),且點(diǎn)M與拋物線的頂點(diǎn)N關(guān)于x軸對(duì)稱.
(1)求這條拋物線的函數(shù)關(guān)系式;
(2)根據(jù)圖象,寫(xiě)出函數(shù)值y為負(fù)數(shù)時(shí),自變量x的取值范圍;
(3)設(shè)題中的拋物線與直線的另一交點(diǎn)為C,已知P(x,y)為直線AC上一點(diǎn),過(guò)點(diǎn)P作PQ⊥x軸,交拋物線于點(diǎn)Q.當(dāng)-1≤x≤1.5時(shí),求線段PQ的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在△ABC中,∠ACB=90°,點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)B(-3,1)在拋物線y=ax2+ax-2上,點(diǎn)C在x軸上.
(1)求a的值;
(2)求點(diǎn)C的坐標(biāo);
(3)若△ABC是等腰直角三角形
①如圖1,將△ABC繞頂點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)β°(0<β<180°)得到△AB′C′,當(dāng)點(diǎn)C′(2,1)恰好落在該拋物線上,請(qǐng)你通過(guò)計(jì)算說(shuō)明點(diǎn)B′也在該拋物線上.
②如圖2,設(shè)拋物線與y軸的交點(diǎn)為D、P、Q兩點(diǎn)同時(shí)從D點(diǎn)出發(fā),點(diǎn)P沿折線D→C→B運(yùn)動(dòng)到點(diǎn)B,點(diǎn)Q沿拋物線(在第二、三象限的部分)運(yùn)動(dòng)到點(diǎn)B,若P、Q兩點(diǎn)的運(yùn)動(dòng)速度相同,請(qǐng)問(wèn)誰(shuí)先到達(dá)點(diǎn)B,為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案