(2011•濉溪縣二模)某商店銷售一種產(chǎn)品,產(chǎn)品的進(jìn)價(jià)是100元/件,物價(jià)部門規(guī)定,每件產(chǎn)品的售價(jià)不低于進(jìn)價(jià),且獲利不得超過(guò)其進(jìn)價(jià).這種產(chǎn)品的月銷售量y(件)與實(shí)際售價(jià)x(元/件)之間的關(guān)系如下表:
實(shí)際售價(jià)(元/價(jià))150160168180
月銷售量y(件) 500480464440
此外,銷售該產(chǎn)品的總開(kāi)支z(元)(不含進(jìn)價(jià))與月銷售量y(件)存在如下的函數(shù)關(guān)系,z=20y+4000
(1)請(qǐng)你猜想y(件)與x(元/件)之間可能存在怎樣的函數(shù)關(guān)系;試求出y與x之間的函數(shù)表達(dá)式并寫出自變量的取值范圍.
(2)該商店銷售這種產(chǎn)品的月利潤(rùn)為P(元),求P與x之間的函數(shù)表達(dá)式;(注:月利潤(rùn)=月銷售額-成本-總開(kāi)支)
(3)求該商店銷售這種產(chǎn)品的月利潤(rùn)最大值是多少元?
【答案】分析:(1)根據(jù)圖表中的各數(shù)可得出y與x成一次函數(shù)關(guān)系,從而結(jié)合圖表的數(shù)可得出y與x的關(guān)系式.
(2)根據(jù)月利潤(rùn)=月銷售額-成本-總開(kāi)支可表示出P與x之間的函數(shù)表達(dá)式.
(3)利用二次函數(shù)的最值可得出月利潤(rùn)最大值.
解答:解:(1)設(shè)y=kx+b,將(150,500)、(160,480)代入可得:

∴y=-2x+800(100≤x≤400).

(2)P=yx-100y-z
=-2x2+800x-100(-2x+800)-[20(-2x+800)+4000]
=-2x2+1000x-80000+40x-16000-4000
=-2x2+1000x-80000+40x-16000-4000
=-2x2+1040x-100000.

(3)∵P=-2x2+1040x-100000=-2(x-260)2+35200,
∵獲利不得超過(guò)其進(jìn)價(jià),
∴當(dāng)x=200時(shí),
∴該商店銷售這種產(chǎn)品的月利潤(rùn)最大值是28000元.
點(diǎn)評(píng):本題考查二次函數(shù)的應(yīng)用,難度較大,解答本題的關(guān)鍵是根據(jù)題意列出方程,另外要注意掌握二次函數(shù)的最值的求法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2011年河北省邢臺(tái)市隆堯縣堯山中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2011•濉溪縣二模)如圖,直角梯形ABCD中,AB∥CD,∠A=90°,AB=6,AD=4,DC=3,點(diǎn)P從點(diǎn)A出發(fā)沿折線段AD-DC-CB以每秒3個(gè)單位長(zhǎng)的速度向點(diǎn)B勻速運(yùn)動(dòng),同時(shí),點(diǎn)Q從點(diǎn)A出發(fā)沿射線AB方向以每秒2個(gè)單位長(zhǎng)的速度勻速運(yùn)動(dòng),當(dāng)點(diǎn)P與點(diǎn)B重合時(shí)停止運(yùn)動(dòng),點(diǎn)Q也隨之停止,設(shè)點(diǎn)P,Q的運(yùn)動(dòng)時(shí)間是t秒(t>0).
(1)當(dāng)點(diǎn)P到達(dá)終點(diǎn)B時(shí),求t的值;
(2)設(shè)△APQ的面積為S,分別求出點(diǎn)P運(yùn)動(dòng)到AD、CD上時(shí),S與t的函數(shù)關(guān)系式;
(3)當(dāng)t為何值時(shí),能使PQ∥DB;
(4)是否存在t值,使PQ⊥AC?若存在,直接寫出t的值;若不存在,請(qǐng)簡(jiǎn)要說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年河北省邢臺(tái)市隆堯縣堯山中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2011•濉溪縣二模)如圖1,在等邊△ABC中,AD是∠BAC的平分線,一個(gè)含有120°角的△MPN的頂點(diǎn)P(∠MPN=120°)與點(diǎn)D重合,一邊與AB垂直于點(diǎn)E,另一邊與AC交于點(diǎn)F.
(1)請(qǐng)猜想并寫出AE+AF與AD之間滿足的數(shù)量關(guān)系,不必證明.
(2)在圖1的基礎(chǔ)上,若△MPN繞著它的頂點(diǎn)P旋轉(zhuǎn),E、F仍然是△MPN的兩邊與AB、AC的交點(diǎn),當(dāng)三角形紙板的邊不與AB垂直時(shí),如圖2,(1)中猜想是否仍然成立?說(shuō)明理由.
(3)如圖3,若△MPN繞著它的頂點(diǎn)P旋轉(zhuǎn),當(dāng)△MPN的一邊與AB的延長(zhǎng)線相交,另一邊與AC的反向延長(zhǎng)線相交時(shí),AE、AF與AD之間又滿足怎樣的數(shù)量關(guān)系?直接寫出結(jié)論,不必證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年河北省邢臺(tái)市隆堯縣堯山中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2011•濉溪縣二模)探索發(fā)現(xiàn):
(1)如圖1,在△ABC中,AD是BC邊上的中線,若△ABC的面積為S,則△ACD的面積為_(kāi)_____.
聯(lián)系拓展:
(2)在圖2中,E、F分別是?ABCD的邊AB、BC的中點(diǎn),若?ABCD的面積為S,求四邊形BEDF的面積?并說(shuō)明理由.
(3)在圖3中,E、F分別是?ABCD的邊AB、BC上的點(diǎn),且AE=AB,BF=BC,若?ABCD的面積為S,則四邊形BEDF的面積為_(kāi)_____.
解決問(wèn)題:
(4)如圖4中,矩形ABCD中,AB=nBC(n為常數(shù),且n>0).E是AB邊上的一個(gè)動(dòng)點(diǎn),F(xiàn)是BC邊上的一個(gè)動(dòng)點(diǎn).若在兩點(diǎn)運(yùn)動(dòng)的過(guò)程中,四邊形BEDF的面積始終等于矩形面積的,請(qǐng)?zhí)骄烤段AE、BF應(yīng)滿足怎樣的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年河北省邢臺(tái)市隆堯縣堯山中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2011•濉溪縣二模)解方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年河北省邢臺(tái)市隆堯縣堯山中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:選擇題

(2011•濉溪縣二模)如圖,⊙O是正三角形ABC的外接圓,點(diǎn)P在劣弧AB上,∠ABP=22°,則∠BCP的度數(shù)為( )

A.22°
B.38°
C.48°
D.60°

查看答案和解析>>

同步練習(xí)冊(cè)答案