請(qǐng)閱讀下列材料:
問(wèn)題:如圖1,在正方形ABCD和正方形CEFG中,點(diǎn)B、C、E在同一條直線上,M是線段AF的中點(diǎn),連接DM,MG.探究線段DM與MG數(shù)量與位置有何關(guān)系.

小聰同學(xué)的思路是:延長(zhǎng)DM交GF于H,構(gòu)造全等三角形,經(jīng)過(guò)推理使問(wèn)題得到解決.
請(qǐng)你參考小聰同學(xué)的思路,探究并解決下列問(wèn)題:
(1)直接寫出上面問(wèn)題中線段DM與MG數(shù)量與位置有何關(guān)系
DM=MG且DM⊥MG
DM=MG且DM⊥MG
;
(2)將圖1中的正方形CEFG繞點(diǎn)C順時(shí)針旋轉(zhuǎn),使正方形CEFG對(duì)角線CF恰好與正方形ABCD的邊BC在同一條直線上,原問(wèn)題中的其他條件不變(如圖2).你在(1)中得到的兩個(gè)結(jié)論是否發(fā)生變化?寫出你的猜想并加以證明.
(3)如圖3,將正方形CEFG繞點(diǎn)C順時(shí)針旋轉(zhuǎn)任意角度,原問(wèn)題中的其他條件不變,寫出你的猜想.
分析:(1)根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠DAM=∠HFM,然后利用“角邊角”證明△ADM和△FHM全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得DM=HM,AD=FH,再求出GD=GH,然后根據(jù)等腰直角三角形的性質(zhì)解答;
(2)延長(zhǎng)DM交CF于H,連接GD,GH,同(1)可得DM=HM,AD=FH,再利用“邊角邊”證明△CDG和△FHG全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得GD=GH,∠CGD=∠FGH,然后根據(jù)等腰直角三角形的性質(zhì)解答;
(3)過(guò)點(diǎn)F作FH∥AD交DM的延長(zhǎng)線于H,交DC的延長(zhǎng)線于N,同(1)可得DM=HM,AD=FH,根據(jù)等角的余角相等求出∠DCG=∠HFG,然后利用“邊角邊”證明△CDG和△FHG全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得GD=GH,然后根據(jù)等腰直角三角形的性質(zhì)解答.
解答:(1)解:如圖1,在正方形ABCD和正方形CEFG中,AD∥BC∥GF,
∴∠DAM=∠HFM,
∵M(jìn)是線段AF的中點(diǎn),
∴AM=FM,
在△ADM和△FHM中,
∠DAM=∠HFM
AM=FM
∠AMD=∠FMH
,
∴△ADM≌△FHM(ASA),
∴DM=HM,AD=FH,
∵GD=CG-CD,GH=GF-FH,AD=CD,CG=GF,
∴GD=GH,
∴△DGH是等腰直角三角形,
∴DM=MG且DM⊥MG;

(2)如圖2,延長(zhǎng)DM交CF于H,連接GD,GH,
同(1)可得DM=HM,AD=FH,
∵CF恰好與正方形ABCD的邊BC在同一條直線上,
∴∠DCG=90°-45°=45°,
∠HFG=45°,
∴∠DCG=∠HFG,
在△CDG和△FHG中,
CD=FH
∠DCG=∠HFG
CG=FG
,
∴△CDG≌△FHG(SAS),
∴GD=GH,∠CGD=∠FGH,
∴∠DGH=∠CGD+∠CGH=∠FGH+∠CGH=∠CGF=90°,
∴△DGH是等腰直角三角形,
∴DM=MG且DM⊥MG;

(3)如圖3,過(guò)點(diǎn)F作FH∥AD交DM的延長(zhǎng)線于H,交DC的延長(zhǎng)線于N,
同(1)可得DM=HM,AD=FH,
易得∠NCE=∠EFN,
∵∠DCG+∠NCE=180°-90°=90°,
∠HFG+∠EFN=90°,
∴∠DCG=∠HFG,
在△CDG和△FHG中,
CD=FH
∠DCG=∠HFG
CG=FG
,
∴△CDG≌△FHG(SAS),
∴GD=GH,∠CGD=∠FGH,
∴∠DGH=∠CGD+∠CGH=∠FGH+∠CGH=∠CGF=90°,
∴△DGH是等腰直角三角形,
∴DM=MG且DM⊥MG.
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),全等三角形的判定與性質(zhì),在正方形中證明三角形全等,并運(yùn)用全等的性質(zhì)解題是中考的熱點(diǎn),本題作輔助線,構(gòu)造出全等三角形是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

請(qǐng)閱讀下列材料:
問(wèn)題:解方程(x2-1)2-5(x2-1)+4=0.
明明的做法是:將x2-1視為一個(gè)整體,然后設(shè)x2-1=y,則(x2-1)2=y2,原方程可化為y2-5y+4=0,解得y1=1,y2=4.
(1)當(dāng)y=1時(shí),x2-1=1,解得x=±
2
;
(2)當(dāng)y=4時(shí),x2-1=4,解得x=±
5

綜合(1)(2),可得原方程的解為x1=
2
,  x2=-
2
,  x3=
5
,  x4=-
5

請(qǐng)你參考明明同學(xué)的思路,解方程x4-x2-6=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

請(qǐng)閱讀下列材料:
問(wèn)題:已知方程x2+x-1=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的2倍.
解:設(shè)所求方程的根為y,則y=2x所以x=
y
2

把x=
y
2
代入已知方程,得(
y
2
2+
y
2
-1=0
化簡(jiǎn),得y2+2y-4=0
故所求方程為y2+2y-4=0.
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
請(qǐng)用閱讀村料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+x-2=0,求一個(gè)一元二次方程,使它的根分別為己知方程根的相反數(shù),則所求方程為:
 
;
(2)己知關(guān)于x的一元二次方程ax2+bx+c=0有兩個(gè)不等于零的實(shí)數(shù)根,求一個(gè)一元二次方程,使它的根分別是己知方程根的倒數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2013•貴陽(yáng)模擬)請(qǐng)閱讀下列材料:
問(wèn)題:如圖1,圓柱的底面半徑為1dm,BC是底面直徑,圓柱高AB為5dm,求一只螞蟻從點(diǎn)A出發(fā)沿圓柱表面爬行到點(diǎn)C的最短路線,小明設(shè)計(jì)了兩條路線:
路線1:高線AB+底面直徑BC,如圖1所示.路線2:側(cè)面展開(kāi)圖中的線段AC,如圖2所示.(結(jié)果保留π)

(1)設(shè)路線1的長(zhǎng)度為L(zhǎng)1,則L12=
49
49
.設(shè)路線2的長(zhǎng)度為L(zhǎng)2,則L22=
25+π2
25+π2
.所以選擇路線
2
2
(填1或2)較短.
(2)小明把條件改成:“圓柱的底面半徑為5dm,高AB為1dm”繼續(xù)按前面的路線進(jìn)行計(jì)算.此時(shí),路線1:L12=
121
121
.路線2:L22=
1+25π2
1+25π2
.所以選擇路線
1
1
(填1或2)較短.
(3)請(qǐng)你幫小明繼續(xù)研究:當(dāng)圓柱的底面半徑為2dm,高為hdm時(shí),應(yīng)如何選擇上面的兩條路線才能使螞蟻從點(diǎn)A出發(fā)沿圓柱表面爬行到點(diǎn)C的路線最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

請(qǐng)閱讀下列材料:?jiǎn)栴}:已知方程x2+x-3=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的2倍
解:設(shè)所求方程的根為y,則y=2x,
所以x=
y
2

把x=
y
2
代入已知方程,得
(
y
2
)2+
y
2
-3=0

化簡(jiǎn),得y2+2y-12=0故所求方程為y2+2y-12=0.
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
(1)已知方程x2+x-1=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的3倍,則所求方程為
y2+3y-9=0
y2+3y-9=0

(2)已知關(guān)于x的一元二次方程ax2+bx+c=0有兩個(gè)不等于零的實(shí)數(shù)根,求一個(gè)一元二次方程,使它的根分別是已知方程根的倒數(shù);
(3)已知關(guān)于x的方程x2-mx+n=0有兩個(gè)實(shí)數(shù)根,求一個(gè)方程,使它的根分別是已知方程根的平方.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

請(qǐng)閱讀下列材料:
問(wèn)題:正方形ABCD中,M,N分別是直線CB、DC上的動(dòng)點(diǎn),∠MAN=45°,當(dāng)∠MAN交邊CB、DC于點(diǎn)M、N(如圖①)時(shí),線段BM、DN和MN之間有怎樣的數(shù)量關(guān)系?
小聰同學(xué)的思路是:延長(zhǎng)CB至E使BE=DN,并連接AE,構(gòu)造全等三角形經(jīng)過(guò)推理使問(wèn)題得到解決.請(qǐng)你參考小聰同學(xué)的思路,探究并解決下列問(wèn)題:
(1)直接寫出上面問(wèn)題中,線段BM,DN和MN之間的數(shù)量關(guān)系;
(2)當(dāng)∠MAN分別交邊CB,DC的延長(zhǎng)線于點(diǎn)M/N時(shí)(如圖②),線段BM,DN和MN之間的又有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的猜想,并加以證明;
(3)在圖①中,若正方形的邊長(zhǎng)為16cm,DN=4cm,請(qǐng)利用(1)中的結(jié)論,試求MN的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案