【題目】如圖,在△ABC中,∠ACB=90°,AB=18,cosB=,把△ABC繞著點(diǎn)C旋轉(zhuǎn),使點(diǎn)B與AB邊上的點(diǎn)D重合,點(diǎn)A落在點(diǎn)E處,則線段AE的長為( )
A. 6 B. 7 C. 8 D. 9
【答案】C
【解析】先解直角△ABC,得出BC=AB×cosB=18×=12,AC==6. 再根據(jù)旋轉(zhuǎn)的性質(zhì)得出BC=DC=6,AC=EC=3,∠BCD=∠ACE,利用等邊對(duì)等角以及三角形內(nèi)角和定理得出∠B=∠CAE,作CM⊥BD于M,作CN⊥AE于N,則∠BCM=∠BCD,∠ACN=∠ACE,∠BCM=∠ACN,解直角△ANC求出AN=AC×cos∠CAN=6×=4,根據(jù)等腰三角形三線合一的性質(zhì)得出AE=2AN=8.
解:∵在△ABC中,∠ACB=90°,AB=18,cosB=,
∴BC=AB×cosB=18×=12,AC==6.
∵把△ABC繞著點(diǎn)C旋轉(zhuǎn),使點(diǎn)B與AB邊上的點(diǎn)D重合,點(diǎn)A落在點(diǎn)E,
∴△ABC≌△EDC,BC=CD=12,AC=EC=6,∠BCD=∠ACE,
∴∠B=∠CAE.
作CN⊥AE于N,則∠BCM=∠BCD,∠ACN=∠ACE,
∴∠BCM=∠ACN,
∵在△ANC中,∠ANC=90°,AC=6,cos∠CAN=cosB=,
∴AN=AC×cos∠CAN=6×=4,
∴AE=2AN=8.
故答案為:8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,BD為對(duì)角線,E、F是BD上的點(diǎn),且BE=DF. 求證:四邊形AECF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c的對(duì)稱軸為x=2,且其頂點(diǎn)在直線y=﹣2x+2上.
(1)直接寫出拋物線的頂點(diǎn)坐標(biāo);
(2)求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市一月份的營業(yè)額為100萬元,第一季度的營業(yè)額共800萬元.如果平均每月增長率為x,則所列方程應(yīng)為( )
A. 100(1+x)2=800
B. 100+100×2x=800
C. 100+100×3x=800
D. 100[1+(1+x)+(1+x)2]=800
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形紙片ABCD中,EF∥AB,M,N是線段EF的兩個(gè)動(dòng)點(diǎn),且MN=EF,若把該正方形紙片卷成一個(gè)圓柱,使點(diǎn)A與點(diǎn)B重合,若底面圓的直徑為6cm,則正方形紙片上M,N兩點(diǎn)間的距離是____________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將三角形ABC沿DE折疊,使點(diǎn)A落在BC上的點(diǎn)F處,且DE∥BC,若∠B=70,則∠BDF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y關(guān)于 x的函數(shù)y=(m2+2m)x2+mx+m+1.
(1)當(dāng)m為何值時(shí),此函數(shù)是一次函數(shù)?
(2)當(dāng)m為何值時(shí),此函數(shù)是二次函數(shù)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com