如圖:直線y=-x+18分別與x軸、y軸交于A、B兩點(diǎn);直線y=2x分別與AB交于C點(diǎn),與過(guò)點(diǎn)A且平行于y軸的直線交于D點(diǎn).點(diǎn)E從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度沿x軸向左運(yùn)動(dòng),過(guò)點(diǎn)E作x軸的垂線,分別交直線AB、OD于P、Q,以PQ為邊向右作正方形PQMN,設(shè)正方形PQMN與△ACD重疊部分(陰影部分)的面積為S(平方單位),點(diǎn)E的運(yùn)動(dòng)時(shí)間為t(秒).
(1)當(dāng)0<t<12時(shí),求S與t之間的函數(shù)關(guān)系式;
(2)求(1)中S的最大值;
(3)當(dāng)t>0時(shí),若點(diǎn)(10,10)落在正方形PQMN的內(nèi)部,求t的取值范圍.

解:(1)∵直線y=-x+18分別與x軸、y軸交于A、B兩點(diǎn),
∴A(18,0),B(0,18),
∵直線y=2x與AB交于C點(diǎn),

解得:x=6,y=12,
∴點(diǎn)C(6,12),
∵直線y=2x與過(guò)點(diǎn)A且平行于y軸的直線交于D點(diǎn),
∴D(18,36),
過(guò)點(diǎn)C作CH⊥AD,則CH=18-6=12,
∵PQ∥AD,
∴CH⊥PQ,△CPQ∽△CAD,
,
∵PK=t,則CG=12-t,
即:
∴PQ=36-3t,
∴當(dāng)0<t<12時(shí),求S與t之間的函數(shù)關(guān)系式為S=t(36-3t)=-3t2+36t;

(2)∵S=-3t2+36t=-3(t-6)2+108,
∴當(dāng)t=6時(shí),S最大,最大值為108;

(3)當(dāng)點(diǎn)Q的橫坐標(biāo)是10時(shí),
則Q(10,20),E(10,0),P(10,8),
∴PE=8,PQ=12,
∴PQ=36-3t=12,
解得:t=8;
當(dāng)N的坐標(biāo)為(10,10)時(shí),
則點(diǎn)P的縱坐標(biāo)為10,
∴P(8,10),
∴E(8,0),
∴AE=10;
即t=10;
∴t的取值范圍為:8<t<10.
分析:(1)首先根據(jù)題意求得A,B,C,D的坐標(biāo),然后過(guò)點(diǎn)C作CH⊥AD,易得△CPQ∽△CAD,由相似三角形的性質(zhì),即可求得PQ的值,則可求得S與t之間的函數(shù)關(guān)系式;
(2)配方,即可求得二次函數(shù)的最大值,即是S的最大值;
(3)當(dāng)PQ過(guò)點(diǎn)(10,10)時(shí),t最;當(dāng)N與(10,10)重合時(shí),t最大,根據(jù)題意求解即可.
點(diǎn)評(píng):此題考查了一次函數(shù)的綜合應(yīng)用,考查了相似三角形的性質(zhì)與判定,正方形的性質(zhì)等知識(shí).此題綜合性很強(qiáng),難度較大,解題時(shí)要注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線:y1=kx+b與拋物線:y2=x2+bx+c交于點(diǎn)A(-2,4),B(8,2).精英家教網(wǎng)
(1)求出直線解析式;
(2)求出使y1>y2的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、如圖,直線a、b都與直線c相交,給出下列條件:(1)∠l=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判斷a∥b的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4、如圖,直線AB、CD相交于點(diǎn)E,EF⊥AB于E,若∠CEF=59°,則∠AED的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線y=6-x交x軸、y軸于A、B兩點(diǎn),P是反比例函數(shù)y=
4
x
(x>0)
圖象上位于直線下方的一點(diǎn),過(guò)點(diǎn)P作x軸的垂線,垂足為點(diǎn)M,交AB于點(diǎn)E,過(guò)點(diǎn)P作y軸的垂線,垂足為點(diǎn)N,交AB于點(diǎn)F.則AF•BE=(  )
A、8
B、6
C、4
D、6
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,直線a∥c,b∥c,直線d與直線a、b、c相交,已知∠1=60°,求∠2、∠3的度數(shù)(可在圖中用數(shù)字表示角).

查看答案和解析>>

同步練習(xí)冊(cè)答案