如圖,機器人從A點沿著西偏南45°方向行了4個單位,到達B點后觀察到原點O在它的南偏東60°的方向上,則A點的坐標(biāo)為(    )。(結(jié)果保留根號)。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖為機器人足球世界杯賽的一個模擬場景,直角坐標(biāo)系中,原點O為球門,機器人M在點A(5,4)處發(fā)現(xiàn)在點B(18,0)處對方另一機器人踢的小球正向球門O作勻速直線運動,已知小球運動的速度為機器人M直線行走速度的兩倍,假定機器人M與小球同時分別自A、B出發(fā),問機器人M從點A沿直線前進,最快可在何處截住小球?并求出機器人M行走路線對應(yīng)的一次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•資陽)在一次機器人測試中,要求機器人從A出發(fā)到達B處.如圖1,已知點A在O的正西方600cm處,B在O的正北方300cm處,且機器人在射線AO及其右側(cè)(AO下方)區(qū)域的速度為20cm/秒,在射線AO的左側(cè)(AO上方)區(qū)域的速度為10cm/秒.
(1)分別求機器人沿A→O→B路線和沿A→B路線到達B處所用的時間(精確到秒);
(2)若∠OCB=45°,求機器人沿A→C→B路線到達B處所用的時間(精確到秒);
(3)如圖2,作∠OAD=30°,再作BE⊥AD于E,交OA于P.試說明:從A出發(fā)到達B處,機器人沿A→P→B路線行進所用時間最短.
(參考數(shù)據(jù):
2
≈1.414,
3
≈1.732,
5
≈2.236,
6
≈2.449)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖為機器人足球世界杯賽的一個模擬場景,直角坐標(biāo)系中,原點O為球門,機器人M在點A(5,4)處發(fā)現(xiàn)在點B(18,0)處對方另一機器人踢的小球正向球門O作勻速直線運動,已知小球運動的速度為機器人M直線行走速度的兩倍,假定機器人M與小球同時分別自A、B出發(fā),問機器人M從點A沿直線前進,最快可在何處截住小球?并求出機器人M行走路線對應(yīng)的一次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年安徽省普通高中理科實驗班招生考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖為機器人足球世界杯賽的一個模擬場景,直角坐標(biāo)系中,原點O為球門,機器人M在點A(5,4)處發(fā)現(xiàn)在點B(18,0)處對方另一機器人踢的小球正向球門O作勻速直線運動,已知小球運動的速度為機器人M直線行走速度的兩倍,假定機器人M與小球同時分別自A、B出發(fā),問機器人M從點A沿直線前進,最快可在何處截住小球?并求出機器人M行走路線對應(yīng)的一次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在一次機器人測試中,要求機器人從A出發(fā)到達B處.如圖1,已知點A在O的正西方600cm處,B在O的正北方300cm處,且機器人在射線AO及其右側(cè)(AO下方)區(qū)域的速度為20cm/秒,在射線AO的左側(cè)(AO上方)區(qū)域的速度為10cm/秒.
(1)分別求機器人沿A→O→B路線和沿A→B路線到達B處所用的時間(精確到秒);
(2)若∠OCB=45°,求機器人沿A→C→B路線到達B處所用的時間(精確到秒);
(3)如圖2,作∠OAD=30°,再作BE⊥AD于E,交OA于P.試說明:從A出發(fā)到達B處,機器人沿A→P→B路線行進所用時間最短.
(參考數(shù)據(jù):數(shù)學(xué)公式≈1.414,數(shù)學(xué)公式≈1.732,數(shù)學(xué)公式≈2.236,數(shù)學(xué)公式≈2.449)

查看答案和解析>>

同步練習(xí)冊答案