(2012•貴港)如圖,PA、PB是⊙O的切線,A、B是切點,點C是劣弧AB上的一個動點,若∠P=40°,則∠ACB的度數(shù)是( 。
分析:連接OA,OB,在優(yōu)弧AB上任取一點D(不與A、B重合),連接BD,AD,如圖所示,由PA與PB都為圓O的切線,利用切線的性質(zhì)得到OA與AP垂直,OB與BP垂直,在四邊形APBO中,根據(jù)四邊形的內(nèi)角和求出∠AOB的度數(shù),再利用同弧所對的圓周角等于所對圓心角的一半求出∠ADB的度數(shù),再根據(jù)圓內(nèi)接四邊形的對角互補即可求出∠ACB的度數(shù).
解答:解:連接OA,OB,在優(yōu)弧AB上任取一點D(不與A、B重合),
連接BD,AD,如圖所示:
∵PA、PB是⊙O的切線,
∴OA⊥AP,OB⊥BP,
∴∠OAP=∠OBP=90°,又∠P=40°,
∴∠AOB=360°-(∠OAP+∠OBP+∠P)=140°,
∵圓周角∠ADB與圓心角∠AOB都對弧AB,
∴∠ADB=
1
2
∠AOB=70°,
又四邊形ACBD為圓內(nèi)接四邊形,
∴∠ADB+∠ACB=180°,
則∠ACB=110°.
故選B
點評:此題考查了切線的性質(zhì),圓周角定理,圓內(nèi)接四邊形的性質(zhì),以及四邊形的內(nèi)角和,熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•貴港)如圖,在?ABCD中,延長CD到E,使DE=CD,連接BE交AD于點F,交AC于點G.
(1)求證:AF=DF;
(2)若BC=2AB,DE=1,∠ABC=60°,求FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•貴港)如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,AD=5,BC=9,以A為中心將腰AB順時針旋轉(zhuǎn)90°至AE,連接DE,則△ADE的面積等于(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•貴港)如圖,直線y=
1
4
x與雙曲線y=
k
x
相交于A、B兩點,BC⊥x軸于點C(-4,0).
(1)求A、B兩點的坐標及雙曲線的解析式;
(2)若經(jīng)過點A的直線與x軸的正半軸交于點D,與y軸的正半軸交于點E,且△AOE的面積為10,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•貴港)如圖是由若干個大小相同的正方體搭成的幾何體的三視圖,則該幾何體所用的正方體的個數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊答案