已知,如圖,等邊三角形ABC中,AB=4,點P為AB邊上的任意一點(點P可以與點A重合,但不與點B重合),過點P作PE⊥BC,垂足為E,過點E作EF⊥AC,垂足為F,過點F作FQ⊥AB,垂足為Q,設(shè)BP=x,AQ=y.
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)BP的長等于多少時,點P與點Q重合.

解:(1)PE⊥BC,EF⊥AC,F(xiàn)Q⊥AB,
∠A=∠B=∠C=60°,設(shè)BP=x,
∴BE=,EC=4-,CF=2-
AF=4-2+=2+,
∵△BEP∽△AQF,
,
∴AQ=1+,
∴y=1+(0<x≤4);

(2)當(dāng)x+y=4,x+1+=4,
x=3,
∴x=
故BP為時,P與Q重合.
分析:(1)設(shè)BP=x,利用等邊三角形中,三個角均為60°,三邊長相等,逐步求出BE,EC,CF,AF的長,利用△BEP∽△AQF,對應(yīng)邊成比例,求出AP與AQ之間的關(guān)系;
(2)點P與點Q重合時,有AQ+AP=AB,代入關(guān)系式求解.
點評:解題的關(guān)鍵是利用銳角三角函數(shù)的概念,逐步找到x與y關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

學(xué)習(xí)《圖形的相似》后,我們可以借助探索兩個直角三角形全等的條件所獲得經(jīng)驗,繼續(xù)探索兩個直角三角形相似的條件.
(1)“對與兩個直角三角形,滿足一邊一銳角對應(yīng)相等,或兩直角邊對應(yīng)相等,兩個直角三角形全等”.精英家教網(wǎng)類似地你可以得到:“滿足
 
,或
 
,兩個直角三角形相似”.
(2)“滿足斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等”,類似地你可以得到“滿足
 
的兩個直角三角形相似”.
請結(jié)合下列所給圖形,寫出已知,并完成說理過程.
已知:如圖,
 

試說明Rt△ABC∽Rt△A′B′C′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

學(xué)習(xí)《圖形的相似》后,我們可以探索兩個直角三角形全等的條件所獲得的經(jīng)驗,繼續(xù)探索兩個直角三角形相似的條件.

(1)“對于兩個直角三角形,滿足一邊一銳角對應(yīng)相等,或兩直角邊對應(yīng)相等,兩個直角三角形全等”,類似地,你可以得到“滿足_____,或_____,兩個直角三角形相似”;
(2)“滿足斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等”,類似地,你可以得到滿足_____兩個直角三角形相似”.請結(jié)合下列所給圖形,寫出已知,并完成說理過程.
已知:如圖,_____.試說明Rt△ABC∽Rt△A/B/C/.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年高級中等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)卷(江蘇南京) 題型:解答題

學(xué)習(xí)《圖形的相似》后,我們可以探索兩個直角三角形全等的條件所獲得的經(jīng)驗,繼續(xù)探索兩個直角三角形相似的條件.

(1)“對于兩個直角三角形,滿足一邊一銳角對應(yīng)相等,或兩直角邊對應(yīng)相等,兩個直角三角形全等”,類似地,你可以得到“滿足_____,或_____,兩個直角三角形相似”;
(2)“滿足斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等”,類似地,你可以得到滿足_____兩個直角三角形相似”.請結(jié)合下列所給圖形,寫出已知,并完成說理過程.
已知:如圖,_____.試說明Rt△ABC∽Rt△A/B/C/.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年北京市考數(shù)學(xué)一模試卷 題型:選擇題

已知:如圖,在等邊三角形ABC中,M、N分別是AB、AC的中點,D是MN上任意一點,CD、BD的延長線分別與AB、AC交于F、E,若 ,則等邊三角

 

形ABC的邊長為

 

A.         B.              C.               D.1

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在等邊三角形ABC中,M、N分別是AB、AC的中點,D是MN上任意一點,CD、BD的延長線分別與AB、AC交于F、E,若 ,則等邊三角

 

形ABC的邊長為

 

A.         B.              C.              D.1

 

 

查看答案和解析>>

同步練習(xí)冊答案