(2003•廣西)如圖,四邊形ABCD內(nèi)接于半圓O,AB是直徑.
(1)請(qǐng)你添加一個(gè)條件,使圖中的四邊形ABCD成等腰梯形,這個(gè)條件是______(只需填一個(gè)條件);
(2)如果CD=AB,請(qǐng)你設(shè)計(jì)一個(gè)方案,使等腰梯形ABCD分成面積相等的三部分,并給予證明.

【答案】分析:(1)根據(jù)圓內(nèi)接四邊形的對(duì)角互補(bǔ),則只需保證該四邊形是梯形(等腰梯形)即可;
(2)可連接OD、OC,得出DC=AO=BO,△AOD邊AO上的高、△BOC邊OB上的高、△DCO的邊DC上的高相等,根據(jù)三角形的面積公式求出即可.
解答:解:(1)∠A=∠B(或AD=BC,或,
或DC∥AB,或∠D+∠A=180°等);

(2)如圖,連接OD,OC,則
S△AOD=S△CDO=S△BOC=S梯形ABCD;
證明:∵CD∥AB,CD=AB,
∴DC=AO=BO,
∵DC∥AB,
∴△AOD邊AO上的高、△BOC邊OB上的高、△DCO的邊DC上的高相等,
∴S△AOD=S△CDO=S△BOC=S梯形ABCD
點(diǎn)評(píng):本題考查了圓內(nèi)接四邊形的性質(zhì)、等腰梯形的判定和性質(zhì)、全等三角形的判定和性質(zhì)等知識(shí).注意:圓內(nèi)接梯形一定是等腰梯形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2003•廣西)如圖,以A(0,)為圓心的圓與x軸相切于坐標(biāo)原點(diǎn)O,與y軸相交于點(diǎn)B,弦BD的延長(zhǎng)線交x軸的負(fù)半軸于點(diǎn)E,且∠BEO=60°,AD的延長(zhǎng)線交x軸于點(diǎn)C.
(1)分別求點(diǎn)E、C的坐標(biāo);
(2)求經(jīng)過(guò)A、C兩點(diǎn),且以過(guò)E而平行于y軸的直線為對(duì)稱軸的拋物線的函數(shù)解析式;
(3)設(shè)拋物線的對(duì)稱軸與AC的交點(diǎn)為M,試判斷以M點(diǎn)為圓心,ME為半徑的圓與⊙A的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年廣西中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•廣西)如圖,以A(0,)為圓心的圓與x軸相切于坐標(biāo)原點(diǎn)O,與y軸相交于點(diǎn)B,弦BD的延長(zhǎng)線交x軸的負(fù)半軸于點(diǎn)E,且∠BEO=60°,AD的延長(zhǎng)線交x軸于點(diǎn)C.
(1)分別求點(diǎn)E、C的坐標(biāo);
(2)求經(jīng)過(guò)A、C兩點(diǎn),且以過(guò)E而平行于y軸的直線為對(duì)稱軸的拋物線的函數(shù)解析式;
(3)設(shè)拋物線的對(duì)稱軸與AC的交點(diǎn)為M,試判斷以M點(diǎn)為圓心,ME為半徑的圓與⊙A的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《圓》(07)(解析版) 題型:填空題

(2003•廣西)如圖,四邊形OABC中,OA=OB=OC,∠2是∠1的4倍,那么∠4是∠3的    倍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《四邊形》(04)(解析版) 題型:解答題

(2003•廣西)如圖,BD、CE是△ABC的中線,G、H分別是BE、CD的中點(diǎn),BC=8,求GH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年廣西中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2003•廣西)如圖所示,在△ABC中,AB=AC=5,D是BC上的點(diǎn),DE∥AB交AC于點(diǎn)E,DF∥AC交AB于點(diǎn)F,那么四邊形AFDE的周長(zhǎng)是( )

A.5
B.10
C.15
D.20

查看答案和解析>>

同步練習(xí)冊(cè)答案