精英家教網 > 初中數學 > 題目詳情
(2009•烏魯木齊)如圖,將平行四邊形ABCD的對角線BD向兩個方向延長至點E和點F,使BE=DF,求證:四邊形AECF是平行四邊形.

【答案】分析:要證四邊形AECF是平行四邊形,結合圖形知BF是其一條對角線,故需連接另一條對角線AC,由四邊形ABCD是平行四邊形易知OA=OC,OC=OD,只要再證得OE=OF即可.
解答:證明:連接A、C,設AC與BD交于點O.
∵四邊形ABCD是平行四邊形,∴OA=OC,OB=OD,
又∵BE=DF,∴OE=OF.
∴四邊形AECF是平行四邊形.
點評:本題考查了平行四邊形的性質和證明,是一道基礎題.熟練掌握性質定理和判定定理是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源:2009年全國中考數學試題匯編《二次函數》(06)(解析版) 題型:解答題

(2009•烏魯木齊)如圖,在矩形OABC中,已知A、C兩點的坐標分別為A(4,0)、C(0,2),D為OA的中點.設點P是∠AOC平分線上的一個動點(不與點O重合).
(1)試證明:無論點P運動到何處,PC總與PD相等;
(2)當點P運動到與點B的距離最小時,試確定過O、P、D三點的拋物線的解析式;
(3)設點E是(2)中所確定拋物線的頂點,當點P運動到何處時,△PDE的周長最小?求出此時點P的坐標和△PDE的周長;
(4)設點N是矩形OABC的對稱中心,是否存在點P,使∠CPN=90°?若存在,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數學 來源:2010年山東省淄博市中考數學模擬試卷(一)(解析版) 題型:解答題

(2009•烏魯木齊)如圖,在矩形OABC中,已知A、C兩點的坐標分別為A(4,0)、C(0,2),D為OA的中點.設點P是∠AOC平分線上的一個動點(不與點O重合).
(1)試證明:無論點P運動到何處,PC總與PD相等;
(2)當點P運動到與點B的距離最小時,試確定過O、P、D三點的拋物線的解析式;
(3)設點E是(2)中所確定拋物線的頂點,當點P運動到何處時,△PDE的周長最?求出此時點P的坐標和△PDE的周長;
(4)設點N是矩形OABC的對稱中心,是否存在點P,使∠CPN=90°?若存在,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數學 來源:2010年江蘇省無錫市初中畢業(yè)、升學考試數學模擬試卷(解析版) 題型:解答題

(2009•烏魯木齊)如圖,在矩形OABC中,已知A、C兩點的坐標分別為A(4,0)、C(0,2),D為OA的中點.設點P是∠AOC平分線上的一個動點(不與點O重合).
(1)試證明:無論點P運動到何處,PC總與PD相等;
(2)當點P運動到與點B的距離最小時,試確定過O、P、D三點的拋物線的解析式;
(3)設點E是(2)中所確定拋物線的頂點,當點P運動到何處時,△PDE的周長最小?求出此時點P的坐標和△PDE的周長;
(4)設點N是矩形OABC的對稱中心,是否存在點P,使∠CPN=90°?若存在,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數學 來源:2009年新疆烏魯木齊市中考數學試卷(解析版) 題型:解答題

(2009•烏魯木齊)星期天8:00~8:30,燃氣公司給平安加氣站的儲氣罐注入天然氣.之后,一位工作人員以每車20立方米的加氣量,依次給在加氣站排隊等候的若干輛車加氣.儲氣罐中的儲氣量y(立方米)與時間x(小時)的函數關系如圖所示.
(1)8:00~8:30,燃氣公司向儲氣罐注入了多少立方米的天然氣;
(2)當x≥0.5時,求儲氣罐中的儲氣量y(立方米)與時間x(小時)的函數解析式;
(3)請你判斷,正在排隊等候的第18輛車能否在當天10:30之前加完氣?請說明理由.

查看答案和解析>>

科目:初中數學 來源:2009年新疆烏魯木齊市中考數學試卷(解析版) 題型:解答題

(2009•烏魯木齊)如圖,在矩形OABC中,已知A、C兩點的坐標分別為A(4,0)、C(0,2),D為OA的中點.設點P是∠AOC平分線上的一個動點(不與點O重合).
(1)試證明:無論點P運動到何處,PC總與PD相等;
(2)當點P運動到與點B的距離最小時,試確定過O、P、D三點的拋物線的解析式;
(3)設點E是(2)中所確定拋物線的頂點,當點P運動到何處時,△PDE的周長最?求出此時點P的坐標和△PDE的周長;
(4)設點N是矩形OABC的對稱中心,是否存在點P,使∠CPN=90°?若存在,請直接寫出點P的坐標.

查看答案和解析>>

同步練習冊答案