精英家教網(wǎng)如圖,將半徑為2的圓形紙片,沿半徑OA、OB將其裁成1:3兩個(gè)部分,用所得扇形圍成圓錐的側(cè)面,則圓錐的底面半徑為( 。
A、
1
2
B、1
C、1或3
D、
1
2
3
2
分析:利用勾股定理,弧長(zhǎng)公式,圓的周長(zhǎng)公式求解.
解答:精英家教網(wǎng)解:如圖,分兩種情況,
①設(shè)扇形S2做成圓錐的底面半徑為R2
由題意知:扇形S2的圓心角為270度,
則它的弧長(zhǎng)=
270π×2
180
=2πR2,R2=
3
2
;

②設(shè)扇形S1做成圓錐的底面半徑為R1,
由題意知:扇形S1的圓心角為90度,
則它的弧長(zhǎng)=
90π×2
180
=2πR1,R1=
1
2

故選D.
點(diǎn)評(píng):本題利用了勾股定理,弧長(zhǎng)公式,圓的周長(zhǎng)公式求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

11、如圖,將半徑為1的圓的邊上的A點(diǎn)與數(shù)軸的原點(diǎn)重合,然后沿著數(shù)軸向右滾動(dòng),滾動(dòng)一周得到點(diǎn)A′,則點(diǎn)A′表示的數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

歸納猜想:同學(xué)們,讓我們一起進(jìn)行一次研究性學(xué)習(xí):
(1)如圖1已知正三角形ABC的中心為O,半徑為R,將其沿直線l向右翻滾,當(dāng)正三角形翻滾一周時(shí),其中心O經(jīng)過(guò)的路程是多少?

(2)如圖2將半徑為R的正方形沿直線l向右翻滾,當(dāng)正方形翻滾一周時(shí),其中心O經(jīng)過(guò)的路程是多少?

(3)猜想:把正多邊形翻滾一周,其中心O所經(jīng)過(guò)的路程是多少(R為正多邊形的半徑,可參看圖2)?請(qǐng)說(shuō)明理由.

(4)進(jìn)一步猜想:任何多邊形都有一個(gè)外接圓,若將任意圓內(nèi)接多邊形翻滾一周時(shí),其外心所經(jīng)過(guò)的路程是否是一個(gè)定值(R為多邊形外接圓的半徑)?為什么?請(qǐng)以任意三角形為例說(shuō)明(如圖12).
通過(guò)以上猜想你可得到什么樣的結(jié)論?請(qǐng)寫出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,將半徑為1的圓的邊上的A點(diǎn)與數(shù)軸的原點(diǎn)重合,然后沿著數(shù)軸向右滾動(dòng),滾動(dòng)一周得到點(diǎn)A′,則點(diǎn)A′表示的數(shù)為_(kāi)_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年中考數(shù)學(xué)模擬卷(8)(解析版) 題型:填空題

如圖,將半徑為1的圓的邊上的A點(diǎn)與數(shù)軸的原點(diǎn)重合,然后沿著數(shù)軸向右滾動(dòng),滾動(dòng)一周得到點(diǎn)A′,則點(diǎn)A′表示的數(shù)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:同步題 題型:單選題

如圖,將半徑為4cm的圓折疊后,圓弧恰好經(jīng)過(guò)圓心,則折痕的長(zhǎng)為
[     ]
A.4cm
B.2cm
C.cm
D.cm

查看答案和解析>>

同步練習(xí)冊(cè)答案