年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044
里程數(shù)
12:00 一個(gè)兩位數(shù),兩個(gè)數(shù)字和為7
13:00 十位數(shù)與個(gè)位數(shù)與12:00時(shí)看到的顛倒
14:00 比12:00時(shí)看的兩位數(shù)中間多個(gè)0
你來回答下列問題:
設(shè)12:00時(shí)的兩位數(shù)中的十位數(shù)為x,個(gè)位數(shù)為y.
①12:00時(shí)的兩位數(shù)可表示為__________,由此得到方程為__________.
②13:00時(shí)小明看到的數(shù)可表示為__________,這1小時(shí)行駛的路程為__________.
③14:00時(shí)小明看到數(shù)表示為__________g
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:044
探索研究
(1
)觀察一列數(shù)2,4,8,16,32,…,發(fā)現(xiàn)從第二項(xiàng)開始,每一項(xiàng)與前一項(xiàng)之比是一個(gè)常數(shù),這個(gè)常數(shù)是 ;根據(jù)此規(guī)律,如果(為正整數(shù))表示這個(gè)數(shù)列的第項(xiàng),那么 , ;(2
)如果欲求的值,可令 ……………………………………………………①將①式兩邊同乘以3,得
………………………………………………………②
由②減去①式,得
.(3
)用由特殊到一般的方法知:若數(shù)列,從第二項(xiàng)開始每一項(xiàng)與前一項(xiàng)之比的常數(shù)為,則 (用含的代數(shù)式表示),如果這個(gè)常數(shù),那么 (用含的代數(shù)式表示).查看答案和解析>>
科目:初中數(shù)學(xué) 來源:新課標(biāo)3維同步訓(xùn)練與評價(jià)數(shù)學(xué) 九年級(下) 題型:044
如圖,山上有一座鐵塔,山腳下有一矩形建筑物ABCD,且建筑物周圍沒有開闊平整地帶,該建筑物頂端寬度AD和高度DC都可直接測得,從A,D,C三點(diǎn)可以看到頂端H.可供選擇的測量工具有皮尺、測傾器.
(1)請你根據(jù)現(xiàn)有條件,充分利用矩形建筑物,設(shè)計(jì)一個(gè)測量塔頂端到地面高度HG的方案.具體要求如下:
①測量數(shù)據(jù)盡可能少;
②在所給圖形上,畫出你設(shè)計(jì)的測量平面圖,并將應(yīng)測數(shù)據(jù)標(biāo)記在圖形上(如果測線段用m,n表示;如果測角用α,β,γ表示,測傾器高度不計(jì)).
(2)根據(jù)你測量的數(shù)據(jù),計(jì)算塔頂端到地面的高度HG(用字母表示).
H
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044
(1)試用α、β和h的關(guān)系式表示鐵塔高x;
(2)在下表中,根據(jù)第一次和第二次的“測得數(shù)據(jù)”,填寫“平均值”一列中的α、β的數(shù)值.
(3)根據(jù)表中數(shù)據(jù)求出鐵塔高x的值(精確到0.01 m).
題目 測量山頂鐵塔的高
測量目標(biāo)
已知數(shù)據(jù) 山高BC h=153.48 m
測得數(shù)據(jù) 測量項(xiàng)目 第一次 第二次 平均值
仰角α 29°17′ 29°19′ α=
仰角β 34°01′ 33°57′ β=_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
閱讀:我們知道,在數(shù)軸x=1表示一個(gè)點(diǎn),而在平面直角坐標(biāo)系中x=1表示一條直線;我們還知道,以二元一次方程2 x – y + 1 = 0的所有解為坐標(biāo)的點(diǎn)組成的圖形就是一次函數(shù)y=2x-1的圖象,它也是一條直線如圖①。
觀察圖①可以解出,直線x=1現(xiàn)直線y = 2 x -1的交點(diǎn)P的坐標(biāo)(1,3),就是方程組 的解,所以這個(gè)方程組的解為
在直角坐標(biāo)系中,x≤1表示一個(gè)平面區(qū)域,即直線x = 1以及它左側(cè)的部分,如圖②;y≤2 x + 1也表示一個(gè)平面區(qū)域,即直線y = 2 x+1以及它下方的部分,如圖③!
(1,3)
O 1 x 1
(圖①) (圖②) (圖③)
回答下列問題:
(1)在直角坐標(biāo)系(圖④)中,用作圖象的方法求出方程組 的解;
(2)用陰影表示 所圍成的區(qū)域。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com