如圖,點(diǎn)A和點(diǎn)B在第一象限,A是反比例函數(shù)y=數(shù)學(xué)公式上的一點(diǎn),B是反比例函數(shù)y=數(shù)學(xué)公式上的一點(diǎn),且AB平行于x軸,連接OA、OB,則△AOB的面積為_(kāi)_______.

1
分析:設(shè)點(diǎn)A的縱坐標(biāo)為b,根據(jù)反比例函數(shù)的解析式求出點(diǎn)A、B的橫坐標(biāo),然后求出AB的長(zhǎng),再根據(jù)三角形的面積公式列式計(jì)算即可得解.
解答:設(shè)點(diǎn)A的縱坐標(biāo)為b,
所以,=b,
解得x=
∵AB平行于x軸,
∴點(diǎn)B的橫坐標(biāo)為b,
=b,
x=
∴AB=-=,
∴△AOB的面積=וb=1.
故答案為:1.
點(diǎn)評(píng):本題考查了反比例函數(shù)系數(shù)的幾何意義,用點(diǎn)A的縱坐標(biāo)表示出AB的長(zhǎng)度是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、如圖,直線(xiàn)AC∥BD,連接AB,直線(xiàn)AC,BD及線(xiàn)段AB把平面分成①、②、③、④四個(gè)部分,規(guī)定:線(xiàn)上各點(diǎn)不屬于任何部分.當(dāng)動(dòng)點(diǎn)P落在某個(gè)部分時(shí),連接PA,PB,構(gòu)成∠PAC,∠APB,∠PBD三個(gè)角.(提示:有公共端點(diǎn)的兩條重合的射線(xiàn)所組成的角是0°角)
(1)當(dāng)動(dòng)點(diǎn)P落在第①部分時(shí),求證:∠APB=∠PAC+∠PBD;
(2)當(dāng)動(dòng)點(diǎn)P落在第②部分時(shí),∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)
(3)當(dāng)動(dòng)點(diǎn)P在第③部分時(shí),全面探究∠PAC,∠APB,∠PBD之間的關(guān)系,并寫(xiě)出動(dòng)點(diǎn)P的具體位置和相應(yīng)的結(jié)論.選擇其中一種結(jié)論加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•房山區(qū)一模)已知:如圖,點(diǎn)P是線(xiàn)段AB上的動(dòng)點(diǎn),分別以AP、BP為邊向線(xiàn)段AB的同側(cè)作正△APC和正△BPD,AD和BC交于點(diǎn)M.
(1)當(dāng)△APC和△BPD面積之和最小時(shí),直接寫(xiě)出AP:PB的值和∠AMC的度數(shù);
(2)將點(diǎn)P在線(xiàn)段AB上隨意固定,再把△BPD按順時(shí)針?lè)较蚶@點(diǎn)P旋轉(zhuǎn)一個(gè)角度α,當(dāng)α<60°時(shí),旋轉(zhuǎn)過(guò)程中,∠AMC的度數(shù)是否發(fā)生變化?證明你的結(jié)論.
(3)在第(2)小題給出的旋轉(zhuǎn)過(guò)程中,若限定60°<α<120°,∠AMC的大小是否會(huì)發(fā)生變化?若變化,請(qǐng)寫(xiě)出∠AMC的度數(shù)變化范圍;若不變化,請(qǐng)寫(xiě)出∠AMC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線(xiàn)AC∥BD,連接AB,直線(xiàn)AC,BD及線(xiàn)段AB把平面分成①、②、③、④四個(gè)部分,規(guī)定:線(xiàn)上各點(diǎn)不屬于任何部分.當(dāng)動(dòng)點(diǎn)P落在某個(gè)部分時(shí),連接PA,PB,構(gòu)成∠PAC,∠APB,∠PBD三個(gè)角.(提示:有公共端點(diǎn)的兩條重合的射線(xiàn)所組成的角是0°角)
(1)當(dāng)動(dòng)點(diǎn)P落在第①部分時(shí),試說(shuō)明∠APB=∠PAC+∠PBD;
(2)當(dāng)動(dòng)點(diǎn)P落在第②部分時(shí),∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)
(3)當(dāng)動(dòng)點(diǎn)P在第③部分時(shí),全面探究∠PAC,∠APB,∠PBD之間的關(guān)系,并寫(xiě)出動(dòng)點(diǎn)P的具體位置和相應(yīng)的結(jié)論.選擇其中一種結(jié)論加以說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,點(diǎn)P是線(xiàn)段AB上的動(dòng)點(diǎn),分別以AP、BP為邊向線(xiàn)段AB的同側(cè)作正△APC和正△BPD,AD和BC交于點(diǎn)M.
(1)當(dāng)△APC和△BPD面積之和最小時(shí),直接寫(xiě)出AP:PB的值和∠AMC的度數(shù);
(2)將點(diǎn)P在線(xiàn)段AB上隨意固定,再把△BPD按順時(shí)針?lè)较蚶@點(diǎn)P旋轉(zhuǎn)一個(gè)角度α,當(dāng)α<60°時(shí),旋轉(zhuǎn)過(guò)程中,∠AMC的度數(shù)是否發(fā)生變化?證明你的結(jié)論.
(3)在第(2)小題給出的旋轉(zhuǎn)過(guò)程中,若限定60°<α<120°,∠AMC的大小是否會(huì)發(fā)生變化?若變化,請(qǐng)寫(xiě)出∠AMC的度數(shù)變化范圍;若不變化,請(qǐng)寫(xiě)出∠AMC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年北京市燕山區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

已知:如圖,點(diǎn)P是線(xiàn)段AB上的動(dòng)點(diǎn),分別以AP、BP為邊向線(xiàn)段AB的同側(cè)作正△APC和正△BPD,AD和BC交于點(diǎn)M.
(1)當(dāng)△APC和△BPD面積之和最小時(shí),直接寫(xiě)出AP:PB的值和∠AMC的度數(shù);
(2)將點(diǎn)P在線(xiàn)段AB上隨意固定,再把△BPD按順時(shí)針?lè)较蚶@點(diǎn)P旋轉(zhuǎn)一個(gè)角度α,當(dāng)α<60°時(shí),旋轉(zhuǎn)過(guò)程中,∠AMC的度數(shù)是否發(fā)生變化?證明你的結(jié)論.
(3)在第(2)小題給出的旋轉(zhuǎn)過(guò)程中,若限定60°<α<120°,∠AMC的大小是否會(huì)發(fā)生變化?若變化,請(qǐng)寫(xiě)出∠AMC的度數(shù)變化范圍;若不變化,請(qǐng)寫(xiě)出∠AMC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案