如圖,在平面直角坐標(biāo)系xoy中,以點(diǎn)M(1,-1)為圓心,以為半徑作圓,與x軸交于A、B兩點(diǎn),與y軸交于C、D兩點(diǎn),二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A、B、C,頂點(diǎn)為E.

(1)求此二次函數(shù)的表達(dá)式;
(2)設(shè)∠DBC=a,∠CBE=b,求sin(a-b)的值;
(3)坐標(biāo)軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCE相似.若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(1);(2);(3)P1(0,0),P2(0,),P3(9,0).

試題分析:(1)由M(1,-1)為圓心,半徑為可求出A(-1,0)、B(3,0)、C(0,-3)、D(0,1),把A、B、C三點(diǎn)代入二次函數(shù)解析式求出a、b、c的值即可;
(2)在Rt△BCE中與Rt△BOD中可求出∠CBE=∠OBD=b,故sin(a-b)=sin(∠DBC-∠OBD)=sin∠OBC=;
(3)存在,Rt△COA∽R(shí)t△BCE,此時(shí)點(diǎn)P1(0,0)過(guò)A作AP2⊥AC交y正半軸于P2,由Rt△CAP2 ∽R(shí)t△BCE,得P2(0,),過(guò)C作CP3⊥AC交x正半軸于P3,由Rt△P3CA∽R(shí)t△BCE,得P3(9,0)故在坐標(biāo)軸上存在三個(gè)點(diǎn)P1(0,0),P2(0,),P3(9,0),.
試題解析:(1)∵M(jìn)(1,-1)為圓心,半徑為
∴OA=1,OB=3,OC=3,OD=1,
∴A(-1,0)、B(3,0)、C(0,-3)、D(0,1)
把A(-1,0)、B(3,0)、C(0,-3)代入二次函數(shù)y=ax2+bx+c
解得:a=1,b=-2,c=-3
∴ 二次函數(shù)表達(dá)式為
(2)過(guò)點(diǎn)E作EF⊥y軸于點(diǎn)F

∴可得
∵點(diǎn)E為二次函數(shù)的頂點(diǎn)
∴點(diǎn)E的坐標(biāo)為


∴∠OCB=∠ECF=45º
∴∠BCE=90º
∵在Rt△BCE中與Rt△BOD中,

∴∠CBE=∠OBD=b,
∴ sin(a-b)=sin(∠DBC-∠OBD)=sin∠OBC=
(3)顯然 Rt△COA∽R(shí)t△BCE,此時(shí)點(diǎn)P1(0,0)
過(guò)A作AP2⊥AC交y正半軸于P2,由Rt△CAP2 ∽R(shí)t△BCE,得P2(0,
過(guò)C作CP3⊥AC交x正半軸于P3,由Rt△P3CA∽R(shí)t△BCE,得P3(9,0)
故在坐標(biāo)軸上存在三個(gè)點(diǎn)P1(0,0),P2(0,),P3(9,0),使得以P、A、C為頂點(diǎn)的三角形與BCE相似
考點(diǎn):1.二次函數(shù)解析式;2.相似三角形的判定與性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖①,已知線段AB=8,以AB為直徑作半圓O,再以O(shè)A為直徑作半圓C,P是半圓C上的一個(gè)動(dòng)點(diǎn)(P與點(diǎn)A,O不重合),AP的延長(zhǎng)線交半圓O于點(diǎn)D。

(1)判斷線段AP與PD的大小關(guān)系,并說(shuō)明理由;
(2)連接PC,當(dāng)∠ACP=600時(shí),求弧AD的長(zhǎng);
(3)過(guò)點(diǎn)D作DE⊥AB,垂足為E(如圖②),設(shè)AP=x,OE=y,求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求證:△ABD∽△CBE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

閱讀材料

如圖①,△ABC與△DEF都是等腰直角三角形,ACB=∠EDF=90°,且點(diǎn)D在AB邊上,AB、EF的中點(diǎn)均為O,連結(jié)BF、CD、CO,顯然點(diǎn)C、F、O在同一條直線上,可以證明△BOF≌△COD,則BF=CD.解決問(wèn)題:
(1)將圖①中的Rt△DEF繞點(diǎn)O旋轉(zhuǎn)得到圖②,猜想此時(shí)線段BF與CD的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖③,若△ABC與△DEF都是等邊三角形,AB、EF的中點(diǎn)均為O,上述(1)中的結(jié)論仍然成立嗎?如果成立,請(qǐng)說(shuō)明理由;如不成立,請(qǐng)求出BF與CD之間的數(shù)量關(guān)系;
(3)如圖④,若△ABC與△DEF都是等腰三角形,AB、EF的中點(diǎn)均為0,且頂角∠ACB=∠EDF=α,請(qǐng)直接寫(xiě)出的值(用含α的式子表示出來(lái))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,△ABC是格點(diǎn)三角形(三角形的三個(gè)頂點(diǎn)都是小正方形的頂點(diǎn)).

(1)若以格點(diǎn)P、A、B為頂點(diǎn)的三角形與△ABC相似但不全等,請(qǐng)作出所有符合要求的點(diǎn)P;
(2)請(qǐng)寫(xiě)出符合條件格點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在等邊△ABC中,D為BC邊上一點(diǎn),E為AC邊上一點(diǎn),且∠ADE=60°.

(1)求證:△ABD∽△DCE;
(2)若BD=3,CE=2,求△ABC的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

兩個(gè)相似三角形周長(zhǎng)的比是2:3,則它們的面積比是
A.2:3B.3:2C.4:9D.9:4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,小明同學(xué)用自制的直角三角形紙板DEF測(cè)量樹(shù)的高度AB,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點(diǎn)B在同一直線上.已知紙板的兩條直角邊DF=50cm,EF=30cm,測(cè)得邊DF離地面的高度AC=1.5m,CD=20m,則樹(shù)高AB為(   )
A.12mB.13.5m C.15mD.16.5m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,△ABC中,∠B=90°,AB=5,BC=12,將△ABC沿DE折疊,使點(diǎn)C落在AB邊上的處,并且∥BC,則CD的長(zhǎng)是(    ).
A. B.6C.  D.

查看答案和解析>>

同步練習(xí)冊(cè)答案