解:(1)由旋轉(zhuǎn)不變性可知點(diǎn)A'(3,0),OA'=OA=3
設(shè)拋物線解析式為y=a(x+1)(x-3),
將點(diǎn)A(0,3)代入,則3=a(0+1)×(0-3),
解得a=-1,
故y=-(x+1)(x-3)=-x
2+2x+3;
(2)由(1)可知,拋物線對(duì)稱軸為
由對(duì)稱性可知點(diǎn)A'與點(diǎn)C關(guān)于對(duì)稱軸對(duì)稱∴要使PA'+PB'的值最小,只需PC+PB'的值最小
即當(dāng)點(diǎn)P在線段B'C上時(shí).PA'+PB'的值最小
由已知有:A'B'=AB=CO=1
則點(diǎn)B'(3,-1)
設(shè)直線B'C的解析式為y=kx+b,將點(diǎn)B'、C的坐標(biāo)代入,可得
,
,
∴直線B'C的解析式為
當(dāng)x=1時(shí),
,
∴
,此時(shí)PA'+PB'有最小值
;
(3)存在
①當(dāng)AM∥C'A'時(shí),由圖易知,AM≠C'A',此時(shí)四邊形ACA'M是梯形
設(shè)M(m,-m
2+2m+3),顯然,m>0,過M作MF⊥AO,
則FM=m,AF=3-(-m
2+2m+3)=m
2-2m
易知△AFM∽△C'OA',
∴
,即
,
解得m
1=0,
,
∵M(jìn)(0,3)與點(diǎn)A重合,舍去.
∴
.
②當(dāng)C'M∥AA'時(shí),易知C'M≠AA',此時(shí)四邊形AC'MA'
或AMC'A'是梯形,易得直線C'M:y=-x+1,
設(shè)M(n,-n+1),則-n+1=-n
2+2n+3,解得
,
∴
,
綜上所述,滿足題意的M點(diǎn)有三點(diǎn):
,
,
.
分析:(1)由旋轉(zhuǎn)不變性可知點(diǎn)A'(3,0),OA'=OA=3,然后設(shè)出二次函數(shù)的交點(diǎn)式后用待定系數(shù)法求解即可;
(2)首先確定二次函數(shù)的對(duì)稱軸,根據(jù)對(duì)稱性可知點(diǎn)A'與點(diǎn)C關(guān)于對(duì)稱軸對(duì)稱,從而得到要使PA'+PB'的值最小,只需PC+PB'的值最小,即當(dāng)點(diǎn)P在線段B'C上時(shí).PA'+PB'的值最小,然后求得點(diǎn)P的坐標(biāo)即可;
(3)分當(dāng)AM∥C'A'時(shí),得到AM≠C'A',此時(shí)四邊形ACA'M是梯形和當(dāng)C'M∥AA'時(shí),得到C'M≠AA',此時(shí)四邊形AC'MA'或AMC'A'是梯形兩種情況分類討論即可確定點(diǎn)M的坐標(biāo).
點(diǎn)評(píng):本題著重考查了待定系數(shù)法求二次函數(shù)解析式、二次函數(shù)的最值問題等知識(shí)點(diǎn),二次函數(shù)的最值問題及存在性問題,綜合性強(qiáng),有一定的難度.