【題目】在平面直角坐標(biāo)系中,點(diǎn)P(﹣2,﹣3)所在的象限是(
A.第一象限
B.第二象限
C.第三象限
D.第四象限

【答案】C
【解析】解:點(diǎn)P(﹣2,﹣3)所在的象限是第三象限. 故選C.
根據(jù)各象限內(nèi)點(diǎn)的坐標(biāo)特征解答即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線y=kx+b不經(jīng)過第四象限,則( )

Ak0b0

Bk0,b0

Ck≥0b≥0

Dk0,b≥0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線x軸交于A、B兩點(diǎn),頂點(diǎn)C的縱坐標(biāo)為﹣2,現(xiàn)將拋物線向右平移2個(gè)單位,得到拋物線,則下列結(jié)論正確的是

_____.(寫出所有正確結(jié)論的序號(hào))①b>0;②a﹣b+c<0;③陰影部分的面積為4;④c=﹣1,則b2=4a.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,已知∠ABC=120°,AC=4,

(1)用直尺和圓規(guī)作出△ABC的外接圓⊙O(不寫作法,保留作圖痕跡);

(2)求∠AOC的度數(shù);

(3)求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠B=22.5°,AB的垂直平分線交AB于點(diǎn)Q,交BC于點(diǎn)P,PE⊥AC于點(diǎn)E,AD⊥BC于點(diǎn)D,AD交PE于點(diǎn)F.求證:DF=DC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC的直角邊AB為直徑作O交斜邊AC于點(diǎn)D,點(diǎn)EOB的中點(diǎn),連接CE并延長(zhǎng)交O于點(diǎn)F,點(diǎn)F恰好落在的中點(diǎn),連接AF并延長(zhǎng)與CB的延長(zhǎng)線相交于點(diǎn)G連接OF.

(1)求證:OF=BG;

(2)AB=4,DC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】寫出一個(gè)大于3且小于4的無(wú)理數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=﹣x2x+2與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.

⑴求點(diǎn)A,B,C的坐標(biāo);

⑵點(diǎn)E是此拋物線上的點(diǎn),點(diǎn)F是其對(duì)稱軸上的點(diǎn),求以AB,EF為頂點(diǎn)的平行四邊形的面積;

⑶此拋物線的對(duì)稱軸上是否存在點(diǎn)M,使得△ACM是等腰三角形?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,拋物線y= x2+bx+c與x軸、y軸分別相交于點(diǎn)A 1,0)、B(0,3)兩點(diǎn),其頂點(diǎn)為D

(1)求這條拋物線的解析式;

(2)若拋物線與x軸的另一個(gè)交點(diǎn)為E. 求△ODE的面積;拋物線的對(duì)稱軸上是否存在點(diǎn)P使得△PAB的周長(zhǎng)最短。若存在請(qǐng)求出P點(diǎn)的坐標(biāo),若不存在說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案