【題目】某工廠承接了一批紙箱加工任務,用如圖1所示的長方形和正方形紙板(長方形的寬與正方形的邊長相等)加工成如圖所示的豎式與橫式兩種無蓋的長方形紙箱.(加工時接縫材料不計)
(1)若該廠購進正方形紙板1000張,長方形紙板2000張.問豎式紙盒,橫式紙盒各加工多少個,恰好能將購進的紙板全部用完;
(2)該工廠某一天使用的材料清單上顯示,這天一共使用正方形紙板50張,長方形紙板a張,全部加工成上述兩種紙盒,且120<a<136,試求在這一天加工兩種紙盒時,a的所有可能值.
【答案】
(1)
解:設加工豎式紙盒x個,加工橫式紙盒y個,
依題意,得
解得:
答:加工豎式紙盒200個,加工橫式紙盒400個
(2)
解:設加工豎式紙盒x個,加工橫式紙盒y個,
依題意得:
∴y=40﹣,
∵y、a為正整數(shù),
∴a為5的倍數(shù),
∵120<a<136
∴滿足條件的a為:125,130,135.
當a=125時,x=20,y=15;
當a=130時,x=22,y=14;
當a=135時,x=24,y=13
【解析】(1)設加工豎式紙盒x個,加工橫式紙盒y個,每個豎式紙盒需要1張正方形紙板,需要4張長方形紙板;每個橫式紙盒需要2個正方形紙板,需要3個張長方形紙板;等量關系1:豎式用的正方形總數(shù)量+橫式用的正方形總數(shù)量=正方形總數(shù)量;等量關系2:豎式用的長方形總數(shù)量+橫式用的長方形總數(shù)量=長方形總數(shù)量.
(2)與(1)同理出方程,用a來表示x,y中的一個,根據(jù)120<a<136,確定a可能的值,再分別求出x,y的值.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,OD⊥弦BC于點F,交⊙O于點E,連結CE、AE、CD,若∠AEC=∠ODC.
(1)求證:直線CD為⊙O的切線;
(2)若AB=5,BC=4,求線段CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2010年4月14日上午7時49分,我國青海省玉樹藏族自治州玉樹縣發(fā)生里氏7.1級的強烈地震,地震造成重大人員傷亡和財產(chǎn)損失.“地震無情,人間有愛”,某慈善機構將募捐得到的兩批物資第一時間迅速運往災區(qū),第一批共480噸,用8節(jié)火車皮和20輛汽車正好裝完;第二批共524噸,用10節(jié)火車皮和6輛汽車正好裝完,求每節(jié)火車皮和每輛汽車平均各裝多少噸?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今夏,十堰市王家河村瓜果喜獲豐收,果農(nóng)王二胖收獲西瓜20噸,香瓜12噸,現(xiàn)計劃租用甲、乙兩種貨車共8輛將這批瓜果全部運往外地銷售,已知一輛甲種貨車可裝西瓜4噸和香瓜1噸,一輛乙種貨車可裝西瓜和香瓜各2噸.
(1)果農(nóng)王二胖如何安排甲、乙兩種貨車可一次性地運到銷售地?有幾種方案?
(2)若甲種貨車每輛要付運輸費300元,乙種貨車每輛要付運輸費240元,則果農(nóng)王二胖應選擇哪種方案,使運輸費最少?最少運費是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從1、6、﹣5、﹣2這四個數(shù)中任意選擇兩個數(shù)進行加、減、乘、除中的某一種運算,結果最大的是_____(寫出算式和結果);
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com