精英家教網 > 初中數學 > 題目詳情

方程數學公式的根是________.

x=0
分析:方程兩邊都乘以(x+1)把分式方程化為整式方程,然后再進行檢驗.
解答:方程兩邊都乘以(x+1)得,x2+x=0,
解得x1=0,x2=-1,
檢驗:當x=0時,x+1=0+1=1≠0,
當x=-1時,x+1=1-1=0,
所以,原方程的解是x=0.
故答案為:x=0.
點評:本題考查了解分式方程,(1)解分式方程的基本思想是“轉化思想”,把分式方程轉化為整式方程求解.
(2)解分式方程一定注意要驗根.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

關于x的方程x2-a=0(a≥0)有實數根,則方程的根是
 

查看答案和解析>>

科目:初中數學 來源: 題型:

24、閱讀下面材料:解方程:x2-|x|-2=0
解:分以下兩種情況:
(1)當x≥0時,原方程可化為x2-x-2=0,
解得x1=2,x2=-1(不合題意,舍去).
(2)當x<0時,原方程可化為x2-x-2=0,
解得x1=-2,x2=1(不合題意,舍去).
∴原方程的根是x1=2,x2=-2.
請仿照此解法解方程x2-|x-1|-1=0

查看答案和解析>>

科目:初中數學 來源: 題型:

用公式法解方程x2-5x+6=0,則方程的根是

查看答案和解析>>

科目:初中數學 來源: 題型:

16、若方程ax2+bx+c=0(a≠0),a、b、c滿足a+b+c=0和a-b+c=0,則方程的根是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

21、閱讀下面的例題:
解方程:x2+|x|-2=0.
解:原方程可化為:|x|2+|x|-2=0即:(|x|+2)(|x|-1)=0.
∵|x|+2>0∴|x|-1=0∴x1=1,x2=-1
∴原方程的根是x1=1,x2=-1
請參照例題解方程:x2-6x-|x-3|+3=0.

查看答案和解析>>

同步練習冊答案