如圖,生活中,將一個寬度相等的紙條按右圖所示折疊一下,如果∠1=140°,那么∠2的度數(shù)為( 。
分析:根據(jù)折疊的性質得到∠3=∠4,由a∥b,根據(jù)平行線的性質得到∠1=∠3+∠4,∠2+∠3=180°,可計算出∠3=70°,則∠2=180°-70°=110°.
解答:解:如圖,
∵將一個寬度相等的紙條按右圖所示折疊,
∴∠3=∠4,
∵a∥b,
∴∠1=∠3+∠4,∠2+∠3=180°,
∴2∠3=140°,
∴∠3=70°,
∴∠2=180°-70°=110°.
故選C.
點評:本題考查了平行線的性質:兩直線平行,內錯角相等;兩直線平行,同旁內角相等;平行與同一條直線的兩直線平行.也考查了折疊的性質.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下面的題目及分析過程,再回答問題.
設x,y為正實數(shù),且x+y=6,求
x2+1
+
y2+4
的最小值.分析:(1)如圖(1),作長為6的線段AB,過A、B兩點在同側各做AC⊥AB,BD⊥AB,使AC=1,BD=2.
(2)設P是AB上的一個動點.設PA=x,PB=y,則x+y=6,連接PC、PD,則PC=
x2+1
,PD=
y2+4
精英家教網(wǎng)
(3)只要在AB上找到使PC+PD為最小的點P的位置,就可以計算出
x2+1
+
y2+4
的最小值.問題:①在圖(2)中作出符合上述要求的點.
②求AP的長?
③通過上述作圖,計算當x+y=6時,
x2+1
+
y2+4
的最小值為
 

解決問題:
為了豐富學生的課余生活,石家莊外國語學校決定舉辦一次機器人投籃大賽.規(guī)則是:操縱者站在距線段AB 2米的C處,如圖(3)使機器人從A點出發(fā),到C處取到籃球,然后行駛到B處,將籃球投入設在B處的籃筐內,用時少的即為勝利者,為了獲得勝利,請你畫出C的最佳位置;并求當AB=3米時機器人行駛的最短路程?精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•平陽縣二模)為了解某校2400名學生到校上學的方式,在全校隨機抽取了若干名學生進行問卷調查.問卷給出了五種上學方式供學生選擇,每人只能選一項,且不能不選.將調查得到的結果繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整).

(1)問:在這次調查中,一共抽取了多少名學生?
(2)補全頻數(shù)分布直方圖;
(3)估計全校所有學生中有多少人乘坐公交車上學;
(4)為了鼓勵“低碳生活”,學校為隨機抽到的步行或騎自行車上學的學生設計了一個摸獎游戲,具體規(guī)則如下:一個不透明的袋子中裝著標有數(shù)字1、2、3、4的四個完全相同的小球,隨機地從四個小球中摸出一球然后放回,再隨機地摸出一球,若第二次摸出的小球標有的數(shù)字比第一次摸出的小球標有的數(shù)字大,則有小禮物贈送,問獲得小禮物的概率是多少(用樹狀圖或列表說明)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

作一個圖形關于一條直線的軸對稱圖形,再將這個軸對稱圖形沿著與這條直線平行的方向平移,我們把這樣的圖形變換叫做關于這條直線的滑動對稱變換.在自然界和日常生活中,大量地存在這種圖形變換(如圖1),結合軸對稱和平移的有關性質,解答以下問題:精英家教網(wǎng)
(1)如圖2,在關于直線l的滑動對稱變換中,試證明:兩個對應點A,A′的連線被直線l平分;
(2)若點P是正方形ABCD的邊AD上的一點,點P關于對角線AC滑動對稱變換的對應點P′也在正方形ABCD的邊上,請僅用無刻度的直尺在圖3中畫出P′;
(3)定義:若點M到某條直線的距離為d,將這個點關于這條直線的對稱點N沿著與這條直線平行的方向平移到點M′的距離為s,稱[d,s]為點M與M′關于這條直線滑動對稱變換的特征量.如圖4,在平面直角坐標系xOy中,點B是反比例函數(shù)y=
3x
的圖象在第一象限內的一個動點,點B關于y軸的對稱點為C,將點C沿平行于y軸的方向向下平移到點B′.
①若點B(1,3)與B′關于y軸的滑動對稱變換的特征量為[m,m+4],判斷點B′是否在此函數(shù)的圖象上,為什么?
②已知點B與B′關于y軸的滑動對稱變換的特征量為[d,s],且不論點B如何運動,點B′也都在此函數(shù)的圖象上,判斷s與d是否存在函數(shù)關系?如果是,請寫出s關于d的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖,生活中,將一個寬度相等的紙條按右圖所示折疊一下,如果∠1=140°,那么∠2的度數(shù)為


  1. A.
    140°
  2. B.
    120°
  3. C.
    110°
  4. D.
    100°

查看答案和解析>>

同步練習冊答案