【題目】如圖,長方形中,,,長方形內(nèi)有一個點,連結(jié),,,已知,,延長于點,則_____________

【答案】

【解析】

延長APCDF,根據(jù)已知條件得到∠CPF+CPB=90°,根據(jù)矩形的性質(zhì)得到∠DAB=ABC=90°,BC=AD=3,根據(jù)余角的性質(zhì)得到∠EAP=ABP,推出AE=PE,根據(jù)勾股定理即可得到結(jié)論.

延長APCDF
∵∠APB=90°,
∴∠FPB=90°,
∴∠CPF+CPB=90°,
∵四邊形ABCD是矩形,
∴∠DAB=ABC=90°,BC=AD=3,
∴∠EAP+BAP=ABP+BAP=90°,
∴∠EAP=ABP,
CP=CB=3,
∴∠CPB=CBP
∴∠CPF=ABP=EAP,
∵∠EPA=CPF
∴∠EAP=APE,
AE=PE,
CD2+DE2=CE2,
42+3-AE2=3+AE2,

解得AE=.

.

故答案為:.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如下圖,正方形ABCD的邊ABx軸上,A(﹣4,0),B(﹣2,0),定義:若某個拋物線上存在一點P,使得點P到正方形ABCD四個頂點的距離相等,則稱這個拋物線為正方形ABCD友好拋物線.若拋物線y=2x2﹣nx﹣n2﹣1是正方形ABCD友好拋物線,則n的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=4cm,動點E從點A出發(fā),以1cm/秒的速度沿折線ABBC的路徑運動,到點C停止運動.過點E EFBDEF與邊AD(或邊CD)交于點F,EF的長度ycm)與點E的運動時間x(秒)的函數(shù)圖象大致是

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E為正方形ABCD內(nèi)一點,點FCD邊上,且∠BEF90°,EF2BE.點GEF的中點,點HDG的中點,連接EH并延長到點P,使得PHEH,連接DP

1)依題意補全圖形;

2)求證:DPBE;

3)連接EC,CP,猜想線段ECCP的數(shù)量關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC內(nèi)接于⊙O,AC是⊙O的直徑,D是的中點.過點D作CB的垂線,分別交CB、CA延長線于點F、E.

(1)判斷直線EF與⊙O的位置關(guān)系,并說明理由;
(2)若CF=6,∠ACB=60°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BDBE,∠D=∠E,∠ABC=∠DBE90°,BFAE,且點AC,E在同一條直線上.

1)求證:△DAB≌△ECB;

2)若AD3,AF1,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,ABAC,點D在邊BC上,點E在邊AC上,且ADAE

1)如圖1,當AD是邊BC上的高,且∠BAD30°時,求∠EDC的度數(shù);

2)如圖2,當AD不是邊BC上的高時,請判斷∠BAD與∠EDC之間的關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在邊長為3的正方形ABCD中,點E、F、G、H分別在AB、BC、CD、DA邊上,且滿足EB=FC=GD=HA=1,BD分別與HG、HF、EF相交于M、O、N給出以下結(jié)論:

①HO=OF;②OF2=ONOB;③HM=2MG;④SHOM=,其中正確的個數(shù)有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在全民讀書月活動中,某校隨機抽樣調(diào)查了一部分學生本學期計劃購買課外書的費用情況,根據(jù)圖中的相關(guān)信息,解答下面問題;

1)這次調(diào)查獲取的樣本容量是   ;

2)由統(tǒng)計圖可知,這次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)是   ;中位數(shù)是   

3)求這次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù);

4)若該校共有1000名學生,根據(jù)樣本數(shù)據(jù),估計該校本學期計劃購買課外書的總花費.

查看答案和解析>>

同步練習冊答案