如圖所示,A、B兩點(diǎn)分別位于一個池塘的兩側(cè),池塘西邊有一座假山D,在DB的中點(diǎn)C處有一個雕塑,張倩從點(diǎn)A出發(fā),沿直線AC一直向前經(jīng)過點(diǎn)C走到點(diǎn)E,并且CE=CA,然后她測量點(diǎn)E到假山D的距離,則DE的長度就是A、B兩點(diǎn)之間的距離。
(1)你能說明張倩這樣做的根據(jù)嗎?
(2)如果張倩未帶測量工具,但是知道A和假山、雕塑分別相距200米、120米,你能幫助她確定AB的長度范圍嗎?
(3)在第(2)問的啟發(fā)下,你能“已知三角形的一邊和另一邊上的中線,求第三邊的范圍嗎?”請你解決下列問題:在△ABC中,AD是BC邊的中線,AD=3cm,AB=5cm,求AC的取值范圍。
解:(1)根據(jù)SAS,可以判斷△ACB≌△ECD,所以DE=BA;
(2)能,理由如下:
連接AD,在△ADE中,
AD=200米,AE=2AC=240米,
所以240-200< DE< 240+200,
即40< DE< 440,
∴40<AB<440;
 
(3)方法同(2),1<AG<11。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,數(shù)軸上兩點(diǎn)A,B分別表示實數(shù)a,b,則下列四個數(shù)中最大的一個數(shù)是(  )精英家教網(wǎng)
A、a
B、b
C、
1
a
D、
1
b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

矩形OABC在直角坐標(biāo)系中的位置如圖所示,A、C兩點(diǎn)的坐標(biāo)分別為A(6,0)、C(0,3),直線y=
34
x
與BC邊相交于點(diǎn)D.
(1)若拋物線y=ax2+bx(a≠0)經(jīng)過D、A兩點(diǎn),試確定此拋物線的表達(dá)式;
(2)若以點(diǎn)A為圓心的⊙A與直線OD相切,試求⊙A的半徑;
(3)設(shè)(1)中拋物線的對稱軸與直線OD交于點(diǎn)M,在對稱軸上是否存在點(diǎn)精英家教網(wǎng)Q,以Q、O、M為頂點(diǎn)的三角形與△OCD相似?若存在,試求出符合條件的Q點(diǎn)的坐標(biāo);若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖平面直角坐標(biāo)系xoy中,A(1,0)、B(0,1),∠ABO的平分線交x軸于一點(diǎn)D.
(1)求D點(diǎn)的坐標(biāo);
(2)如圖所示,A、B兩點(diǎn)在x軸、y軸上的位置不變,在線段AB上有兩動點(diǎn)M、N,滿足∠MON=45°,下列結(jié)論(1)BM+AN=MN,(2)BM2+AN2=MN2,其中有且只有一個結(jié)論成立,請你判斷哪一個結(jié)論成立,并證明成立的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知一個圓心角為270°扇形工件,未搬動前如圖所示,A、B兩點(diǎn)觸地放置,搬動時,先將扇形以B為圓心,作如圖所示的無滑動翻轉(zhuǎn),再使它緊貼地面滾動,當(dāng)A、B兩點(diǎn)再次觸地時停止,半圓的直徑為6m,則圓心O所經(jīng)過的路線長是( 。﹎.(結(jié)果用含π的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,A,B兩點(diǎn)分別位于一個池塘的兩端,小聰想用繩子測量A,B間的距離,但繩子不夠長,一位同學(xué)幫他想了一個主意:先在地上取一個可以直接到達(dá)A,B的點(diǎn)C,找到AC,BC的中點(diǎn)D,E,并且測出DE的長為10m,則A,B間的距離為( 。

查看答案和解析>>

同步練習(xí)冊答案