【題目】如圖,在△ABC中,∠C=900,AC=BC,AE平分∠BAC與BC交于點(diǎn)E, DE⊥AB于點(diǎn)D,若AB=8cm,則△DEB的周長(zhǎng)為( )
A.4cmB.6cmC.8cmD.10cm
【答案】C
【解析】
先根據(jù)HL證明△CAE≌△EAD.得到DE=CE,AC=AD,又加上AC=BC,則DB+BE+ED=BE+CE+BD=AC+DB=AD+BD=AB,從而得出△DEB的周長(zhǎng).
∵AE平分∠CAB,∠C=90°,DE⊥AB,
∴△CAE和△EAD是直角三角形,CE=DE,
在Rt△CAE和Rt△EAD中
,
∴Rt△CAE≌Rt△EAD(HL),
∴AC=AD,
又∵AC=BC,
∴AC=BC=AD,
∴△DEB的周長(zhǎng)DB+BE+ED=BE+CE+BD=AC+DB=AD+BD=AB,
又∵AB=8cm,
∴△DEB的周長(zhǎng)為8cm.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對(duì)稱軸l為x=﹣1.
(1)求拋物線的解析式并寫(xiě)出其頂點(diǎn)坐標(biāo);
(2)若動(dòng)點(diǎn)P在第二象限內(nèi)的拋物線上,動(dòng)點(diǎn)N在對(duì)稱軸l上.
①當(dāng)PA⊥NA,且PA=NA時(shí),求此時(shí)點(diǎn)P的坐標(biāo);
②當(dāng)四邊形PABC的面積最大時(shí),求四邊形PABC面積的最大值及此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某農(nóng)場(chǎng)要建一個(gè)長(zhǎng)方形的養(yǎng)雞場(chǎng),雞場(chǎng)的一邊靠墻(墻長(zhǎng)米),用木欄圍成三個(gè)大小相等的長(zhǎng)方形,木欄總長(zhǎng)24米,總面積為32平方米.
(1)若墻長(zhǎng)米,求AB、BC的長(zhǎng).
(2)若米的墻長(zhǎng)對(duì)雞舍的長(zhǎng)和寬是否有影響?請(qǐng)說(shuō)明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c是等腰三角形ABC的三條邊,其中a=2,如果b,c是關(guān)于x的一元二次方程的兩個(gè)根,則m是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)的圖象的對(duì)稱軸是直線,其圖象的一部分如圖所示則:①;②;③;④;⑤當(dāng)時(shí),.其中判斷正確的有( )個(gè).
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在等邊△ABC中,點(diǎn)D.E分別在邊BC,AB上,且BD=AE,AD與CE交于點(diǎn)F.
(1)求證:AD=CE
(2)求∠DFC的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是二次函數(shù)的圖象的一部分,給出下列命題:①;②;③的兩根分別為和;④.其中正確的命題是________.(只要求填寫(xiě)正確命題的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題背景:
如圖①,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E、F分別是BC、CD上的點(diǎn).且∠EAF=60°.探究圖中線段BE、EF、FD之間的數(shù)量關(guān)系.
解法探究:小明同學(xué)通過(guò)思考,得到了如下的解決方法.
延長(zhǎng)FD到點(diǎn)G,使DG=BE,連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,從而可得結(jié)論.
(1)請(qǐng)先寫(xiě)出小明得出的結(jié)論,并在小明的解決方法的提示下,寫(xiě)出所得結(jié)論的理由.
解:線段BE、EF、FD之間的數(shù)量關(guān)系是: .
理由:延長(zhǎng)FD到點(diǎn)G,使DG=BE,連結(jié)AG.(以下過(guò)程請(qǐng)同學(xué)們完整解答)
(2)拓展延伸:
如圖②,在四邊形ABCD中,AB=AD,若∠B+∠D=180°,E、F分別是BC、CD上的點(diǎn).且∠EAF=∠BAD,則(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)?jiān)侔呀Y(jié)論寫(xiě)一寫(xiě);若不成立,請(qǐng)直接寫(xiě)出你認(rèn)為成立的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列等式:
完成下列問(wèn)題:
(1)___________
(2) (結(jié)果用冪表示).
(3)已知,求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com