(2012•天津)已知一個(gè)矩形紙片OACB,將該紙片放置在平面直角坐標(biāo)系中,點(diǎn)A(11,0),點(diǎn)B(0,6),點(diǎn)P為BC邊上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合),經(jīng)過點(diǎn)O、P折疊該紙片,得點(diǎn)B′和折痕OP.設(shè)BP=t.

(Ⅰ)如圖①,當(dāng)∠BOP=30°時(shí),求點(diǎn)P的坐標(biāo);
(Ⅱ)如圖②,經(jīng)過點(diǎn)P再次折疊紙片,使點(diǎn)C落在直線PB′上,得點(diǎn)C′和折痕PQ,若AQ=m,試用含有t的式子表示m;
(Ⅲ)在(Ⅱ)的條件下,當(dāng)點(diǎn)C′恰好落在邊OA上時(shí),求點(diǎn)P的坐標(biāo)(直接寫出結(jié)果即可).
分析:(Ⅰ)根據(jù)題意得,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案;
(Ⅱ)由△OB′P、△QC′P分別是由△OBP、△QCP折疊得到的,可知△OB′P≌△OBP,△QC′P≌△QCP,易證得△OBP∽△PCQ,然后由相似三角形的對應(yīng)邊成比例,即可求得答案;
(Ⅲ)首先過點(diǎn)P作PE⊥OA于E,易證得△PC′E∽△C′QA,由勾股定理可求得C′A的長,然后利用相似三角形的對應(yīng)邊成比例與m=
1
6
t2-
11
6
t+6
,即可求得t的值.
解答:解:(Ⅰ)根據(jù)題意,∠OBP=90°,OB=6,
在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.
∵OP2=OB2+BP2,
即(2t)2=62+t2
解得:t1=2
3
,t2=-2
3
(舍去).
∴點(diǎn)P的坐標(biāo)為(2
3
,6).

(Ⅱ)∵△OB′P、△QC′P分別是由△OBP、△QCP折疊得到的,
∴△OB′P≌△OBP,△QC′P≌△QCP,
∴∠OPB′=∠OPB,∠QPC′=∠QPC,
∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,
∴∠OPB+∠QPC=90°,
∵∠BOP+∠OPB=90°,
∴∠BOP=∠CPQ.
又∵∠OBP=∠C=90°,
∴△OBP∽△PCQ,
OB
PC
=
BP
CQ

由題意設(shè)BP=t,AQ=m,BC=11,AC=6,則PC=11-t,CQ=6-m.
6
11-t
=
t
6-m

∴m=
1
6
t2-
11
6
t+6
(0<t<11).

(Ⅲ)過點(diǎn)P作PE⊥OA于E,
∴∠PEA=∠QAC′=90°,
∴∠PC′E+∠EPC′=90°,
∵∠PC′E+∠QC′A=90°,
∴∠EPC′=∠QC′A,
∴△PC′E∽△C′QA,
PE
AC′
=
PC′
C′Q
,
∵PC′=PC=11-t,PE=OB=6,AQ=m,C′Q=CQ=6-m,
∴AC′=
C′Q2-AQ2
=
36-12m
,
6
36-12m
=
11-t
6-m
,
36
12(3-m)
=(
11-t
6-m
)2

∴3(6-m)2=(3-m)(11-t)2,
∵m=
1
6
t2-
11
6
t+6

∴3(-
1
6
t2+
11
6
t)2=(3-
1
6
t2+
11
6
t-6)(11-t)2,
1
12
t2(11-t)2=(-
1
6
t2+
11
6
t-3)(11-t)2
1
12
t2=-
1
6
t2+
11
6
t-3,
∴3t2-22t+36=0,
解得:t1=
11-
13
3
,t2=
11+
13
3

點(diǎn)P的坐標(biāo)為(
11-
13
3
,6)或(
11+
13
3
,6).

法二:∵∠BPO=∠OPC′=∠POC′,
∴OC′=PC′=PC=11-t,
過點(diǎn)P作PE⊥OA于點(diǎn)E,
則PE=BO=6,OE=BP=t,
∴EC′=11-2t,
在Rt△PEC′中,PE2+EC′2=PC′2,
即(11-t)2=62+(11-2t)2,
解得:t1=
11-
13
3
,t2=
11+
13
3

點(diǎn)P的坐標(biāo)為(
11-
13
3
,6)或(
11+
13
3
,6).
點(diǎn)評:此題考查了折疊的性質(zhì)、矩形的性質(zhì)以及相似三角形的判定與性質(zhì)等知識(shí).此題難度較大,注意掌握折疊前后圖形的對應(yīng)關(guān)系,注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•天津)已知拋物線y=ax2+bx+c(0<2a<b)的頂點(diǎn)為P(x0,y0),點(diǎn)A(1,yA)、B(0,yB)、C(-1,yC)在該拋物線上.
(Ⅰ)當(dāng)a=1,b=4,c=10時(shí),
①求頂點(diǎn)P的坐標(biāo);
②求
yA
yB-yC
的值;
(Ⅱ)當(dāng)y0≥0恒成立時(shí),求
yA
yB-yC
的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•天津)“三等分任意角”是數(shù)學(xué)史上一個(gè)著名問題.已知一個(gè)角∠MAN,設(shè)∠α=
13
∠MAN.
(Ⅰ)當(dāng)∠MAN=69°時(shí),∠α的大小為
23
23
(度);
(Ⅱ)如圖,將∠MAN放置在每個(gè)小正方形的邊長為1cm的網(wǎng)格中,角的一邊AM與水平方向的網(wǎng)格線平行,另一邊AN經(jīng)過格點(diǎn)B,且AB=2.5cm.現(xiàn)要求只能使用帶刻度的直尺,請你在圖中作出∠α,并簡要說明做法(不要求證明)
如圖,讓直尺有刻度一邊過點(diǎn)A,設(shè)該邊與過點(diǎn)B的豎直方向的網(wǎng)格線交于點(diǎn)C,與過點(diǎn)B水平方向的網(wǎng)格線交于點(diǎn)D,保持直尺有刻度的一邊過點(diǎn)A,調(diào)整點(diǎn)C、D的位置,使CD=5cm,畫射線AD,此時(shí)∠MAD即為所求的∠α.
如圖,讓直尺有刻度一邊過點(diǎn)A,設(shè)該邊與過點(diǎn)B的豎直方向的網(wǎng)格線交于點(diǎn)C,與過點(diǎn)B水平方向的網(wǎng)格線交于點(diǎn)D,保持直尺有刻度的一邊過點(diǎn)A,調(diào)整點(diǎn)C、D的位置,使CD=5cm,畫射線AD,此時(shí)∠MAD即為所求的∠α.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•天津)已知反比例函數(shù)y=
k-1x
(k為常數(shù),k≠1).
(Ⅰ)其圖象與正比例函數(shù)y=x的圖象的一個(gè)交點(diǎn)為P,若點(diǎn)P的縱坐標(biāo)是2,求k的值;
(Ⅱ)若在其圖象的每一支上,y隨x的增大而減小,求k的取值范圍;
(Ⅲ)若其圖象的一支位于第二象限,在這一支上任取兩點(diǎn)A(x1,y1)、B(x2,y2),當(dāng)y1>y2時(shí),試比較x1與x2的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•天津)已知⊙O中,AC為直徑,MA、MB分別切⊙O于點(diǎn)A、B.

(Ⅰ)如圖①,若∠BAC=25°,求∠AMB的大小;
(Ⅱ)如圖②,過點(diǎn)B作BD⊥AC于E,交⊙O于點(diǎn)D,若BD=MA,求∠AMB的大。

查看答案和解析>>

同步練習(xí)冊答案