【題目】如圖1所示的晾衣架,支架主視圖的基本圖形是菱形,其示意圖如圖2,晾衣架伸縮時,點G在射線DP上滑動,∠CED的大小也隨之發(fā)生變化,已知每個菱形邊長均等于20cm,且AH=DE=EG=20cm.

(1)當(dāng)∠CED=60°時,CD=________cm.

2)當(dāng)CED60°變?yōu)?/span>120°時,點A向左移動了________cm(結(jié)果精確到0.1cm)(參考數(shù)據(jù) ≈1.73).

【答案】 20 43.9

【解析】試題分析:(1)證明△CED是等邊三角形,即可求解;

(2)分別求得當(dāng)∠CED60°和120°,兩種情況下AD的長,求差即可.

試題解析:(1)連接CD(圖1),

∵CE=DE,∠CED=60°,

∴△CED是等邊三角形,

∴CD=DE=20cm;

(2)根據(jù)題意得:AB=BC=CD,

當(dāng)∠CED=60°時,AD=3CD=60cm,

當(dāng)∠CED=120°時,過點EEH⊥CDH(圖2),則∠CEH=60°,CH=HD,

在直角△CHE中,sinCEH=,

CH=20sin60°=20×=10cm),

CD=20cm,

AD=3×20=60≈103.9cm),

∴103.9-60=43.9(cm),

即點A向左移動了43.9cm.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,銳角ABC中,DE分別是AB,AC邊上的點,ADCAEB,且BE、CD交于點F,若∠BAC=40°,則∠BFC的大小是(

A.105°B.100°C.110°D.115°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】工廠接到訂單,需要邊長為(a+3)和3的兩種正方形卡紙.

1)倉庫只有邊長為(a+3)的正方形卡紙,現(xiàn)決定將部分邊長為(a+3)的正方形紙片,按圖甲所示裁剪得邊長為3的正方形.

如圖乙,求裁剪正方形后剩余部分的面積(用含a代數(shù)式來表示);

剩余部分沿虛線又剪拼成一個如圖丙所示長方形(不重疊無縫隙),則拼成的長方形的邊長多少?(用含a代數(shù)式來表示);

2)若將裁得正方形與原有正方形卡紙放入長方體盒子底部,按圖1,圖2兩種方式放置(圖1,圖2中兩張正方形紙片均有部分重疊),盒子底部中未被這兩張正方形紙片覆蓋的部分用陰影表示,設(shè)圖1中陰影部分的面積為S1,圖2中陰影部分的面積為S2測得盒子底部長方形長比寬多3,則S2S1的值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,兩個等腰直角三角板有一條邊在同一條直線上, , 將射線繞點逆時針旋轉(zhuǎn),交直線于點.將圖1中的三角板沿直線向右平移,設(shè)兩點間的距離為

解答問題:

1①當(dāng)點與點重合時,如圖2所示,可得的值為 ;

②在平移過程中, 的值為 (用含的代數(shù)式表示);

2將圖2中的三角板繞點逆時針旋轉(zhuǎn),原題中的其他條件保持不變.當(dāng)點落在線段上時,如圖3所示,計算的值;

3)將圖1中的三角板ABC繞點C逆時針旋轉(zhuǎn)度, ,原題中的其他條件保持不變.如圖4所示,請補(bǔ)全圖形,計算的值(用含k的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,的中點,,.動點從點出發(fā),沿方向以的速度向點運動;同時動點從點出發(fā),沿方向以的速度向點運動,運動時間是秒.

(1)用含的代數(shù)式表示的長度.

(2)在運動過程中,是否存在某一時刻,使點位于線段的垂直平分線上?若存在,求出的值;若不存在,請說明理由.

(3)是否存在某一時刻,使?若存在,求出的值;若不存在,請說明理由.

(4)是否存在某一時刻,使?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是某廣場臺階(結(jié)合輪椅專用坡道)景觀設(shè)計的模型,以及該設(shè)計第一層的截面圖,第一層有十級臺階,每級臺階的高為0.15米,寬為0.4米,輪椅專用坡道AB的頂端有一個寬2米的水平面BC;《城市道路與建筑物無障礙設(shè)計規(guī)范》第17條,新建輪椅專用坡道在不同坡度的情況下,坡道高度應(yīng)符合以下表中的規(guī)定:

坡度

1:20

1:16

1:12

最大高度(米

1.50

1.00

0.75

(1)選擇哪個坡度建設(shè)輪椅專用坡道AB是符合要求的?說明理由;

(2)求斜坡底部點A與臺階底部點D的水平距離AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店銷售一款口罩,每袋的進(jìn)價為12元,計劃售價大于12元但不超過22元,通過試場調(diào)查發(fā)現(xiàn),這種口罩每袋售價提高1元,日均銷售量降低5袋,當(dāng)售價為18元時,日均銷售量為50.

1)在售價為18元的基礎(chǔ)上,將這種口罩的售價每袋提高x元,則日均銷售量是   袋;(用含x的代數(shù)式表示)

2)要想銷售這種口罩每天贏利275元,該商場每袋口罩的售價要定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABBC,對角線AC、BD相交于點EEBD中點,且ADBD,AB2,∠BAC30°,則DC_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張長方形紙板按圖中虛線裁剪成塊,其中有塊是邊長都為厘米的大正方形,塊是邊長都為厘米的小正方形,塊是長為厘米,寬為厘米的一模一樣的小長方形,且,設(shè)圖中所有裁剪線(虛線部分)長之和為厘米.

(1)______(試用的代數(shù)式表示);

(2)若每塊小長方形的面積為平方厘米,四個正方形的面積和為平方厘米,求的值.

查看答案和解析>>

同步練習(xí)冊答案