分析 利用翻折變換的性質(zhì)結(jié)合銳角三角函數(shù)關(guān)系得出CO,AO的長(zhǎng),進(jìn)而得出A,坐標(biāo),再利用待定系數(shù)法求出直線AB的解析式.
解答 解:過(guò)點(diǎn)C作CD⊥x軸于點(diǎn)D,設(shè)點(diǎn)A的坐標(biāo)為(a,0),則OA=a,
∵將△AOB沿直線AB翻折得△ACD,C($\frac{3}{2}$,$\frac{\sqrt{3}}{2}$),
∴AC=OA=a,CD=$\frac{\sqrt{3}}{2}$,OD=$\frac{3}{2}$
∴AD=OD-OA=$\frac{3}{2}$-a,
在Rt△ACD中,根據(jù)勾股定理得:
AD2+CD2=AC2,
即:($\frac{3}{2}$-a)2+($\frac{\sqrt{3}}{2}$)2=a2,
解得:a=1,
∴點(diǎn)A的坐標(biāo)為(1,0),
設(shè)一次函數(shù)的表達(dá)式為:y=kx+b(k≠0)
將A(1,0),B(0,$\sqrt{3}$)代入y=kx+b得:
$\left\{\begin{array}{l}{k+b=0}\\{b=\sqrt{3}}\end{array}\right.$
解得:$\left\{\begin{array}{l}{k=-\sqrt{3}}\\{b=\sqrt{3}}\end{array}\right.$,
∴該一次函數(shù)的表達(dá)式為:y=-$\sqrt{3}$x+$\sqrt{3}$.
點(diǎn)評(píng) 此題主要考查了翻折變換的性質(zhì)以及銳角三角函數(shù)關(guān)系和待定系數(shù)法求一次函數(shù)解析式等知識(shí),得出A,B點(diǎn)坐標(biāo)是解題關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a4-2a2b2+b4 | B. | a4+2a2b2+b4 | C. | a4+b4 | D. | a4-b4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{21}$ | B. | $\sqrt{0.1}$ | C. | $\sqrt{8}$ | D. | $\sqrt{\frac{1}{3}}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{24}$ | B. | $\sqrt{\frac{2}{3}}$ | C. | $\sqrt{0.3}$ | D. | $\sqrt{11}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
參賽者 | 答對(duì)題數(shù) | 不答或答錯(cuò)題數(shù) | 得分 |
A | 19 | 1 | 92 |
B | 18 | 2 | 84 |
C | 17 | 3 | 76 |
D | 10 | 10 | 20 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com