如圖,AB⊥BC,CD⊥BC,點E在BC上,且AE⊥DE;

  (1)求證:△ABE∽△ECD

  (2)若AB=2,CD=3,BC=7,求BE的長;

 

【答案】

(1)見解析

(2)

【解析】(1)根據(jù)AB⊥BC,CD⊥BC,AE⊥DE求得,即可證明兩三角形都得相似

(2)通過△ABE∽△ECD,即可BE的長

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,AB=BC=CA=AD,AH⊥CD于H,CP⊥BC,CP交AH于P.求證:△ABC的面積S=
3
4
AP•BD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

12、如圖,AB=BC=CD,且∠A=15°,則∠ECD=( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

12、如圖,AB=BC=CD=1,則圖中所有線段長度之和為
10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB=BC=AC=AD,那么∠BDC等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,則線段AE的長為
2
2

查看答案和解析>>

同步練習冊答案