當(dāng)自變量x=________時(shí),正比例函數(shù)y=(n+2)xn的函數(shù)值為3.

1
分析:由y=(n+2)xn是正比例函數(shù),可得n的值,求出函數(shù)解析式后令y=3可得出x的值.
解答:∵y=(n+2)xn是正比例函數(shù),
∴n=1,
∴函數(shù)解析式為y=3x;
又∵函數(shù)值為3,
∴3=3x,x=1,
即當(dāng)x=1時(shí),正比例函數(shù)y=(n+2)xn的函數(shù)值為3.
點(diǎn)評(píng):本題考查正比例函數(shù)的概念的掌握,正比例函數(shù)是指形如y=kx(k為常數(shù),且k≠0),x的次數(shù)為1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知如圖,D是邊長為4的正△ABC的邊BC上一點(diǎn),ED∥AC交AB于E,DF⊥AC交AC于F,設(shè)DF=x.
(1)求△EDF的面積y與x的函數(shù)關(guān)系式和自變量x的取值范圍.
(2)當(dāng)x為何值時(shí),△EDF的面積最大,最大面積是多少?
(3)若△DCF與由E、F、D三點(diǎn)組成的三角形相似,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)(在下面的(I)(II)兩題中選做一題,若兩題都做,按第(I)題評(píng)分)
(I)如圖,在△ABC中,AB=4,BC=3,∠B=90°,點(diǎn)D在AB上運(yùn)動(dòng),但與A、B不重合,過B、C、D三點(diǎn)的圓交AC于E,連接DE.
(1)設(shè)AD=x,CE=y,求y與x之間的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(2)當(dāng)AD長為關(guān)于x的方程2x2+(4m+1)x+2m=0的一個(gè)整數(shù)根時(shí),求m的值.

(II)如圖,在直角坐標(biāo)系xOy中,以點(diǎn)A(0,-3)為圓心作圓與x軸相切,⊙B與⊙A外切干點(diǎn)P,B點(diǎn)在x軸正半軸精英家教網(wǎng)上,過P點(diǎn)作兩圓的公切線DP交y軸于D,交x軸于C,
(1)設(shè)⊙A的半徑為r1,⊙B的半徑為r2,且r2=
23
r1,求公切線DP的長及直線DP的函數(shù)解析式,
(2)若⊙A的位置、大小不變,點(diǎn)B在X軸正半軸上移動(dòng),⊙B與⊙A始終外切.過D作⊙B的切線DE,E為切點(diǎn).當(dāng)DE=4時(shí),B點(diǎn)在什么位置?從解答中能發(fā)現(xiàn)什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鼓樓區(qū)二模)已知二次函數(shù)y=ax2+bx+c與自變量x的部分對(duì)應(yīng)值如下表:
x -1 0 1 3
y -3 1 3 1
現(xiàn)給出下列說法:
①該函數(shù)開口向上.  ②該函數(shù)圖象的對(duì)稱軸為過點(diǎn)(1,0)且平行于y軸的直線.
③當(dāng)x=4時(shí),y<0.   ④方程ax2+bx+c=0的正根在3與4之間.其中正確的說法為
③④
③④
.(只需寫出序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

先閱讀下面材料,再回答問題.
一般地,如果函數(shù)y的自變量x在a<x<b范圍內(nèi),對(duì)于任意x1,x2,當(dāng)a<x1<x2<b時(shí),總是有y1<y2(yn是與xn對(duì)應(yīng)的函數(shù)值),那么就說函數(shù)y在a<x<b范圍內(nèi)是增函數(shù).
例如:函數(shù)y=x2在正實(shí)數(shù)范圍內(nèi)是增函數(shù).
證明:在正實(shí)數(shù)范圍內(nèi)任取x1,x2,若x1<x2
則y1-y2=x12-x22=( x1-x2)( x1+x2
因?yàn)閤1>0,x2>0,x1<x2
所以x1+x2>0,x1-x2<0,( x1-x2)( x1+x2)<0
即y1-y2<0,亦即y1<y2,也就是當(dāng)x1<x2時(shí),y1<y2
所以函數(shù)y=x2在正實(shí)數(shù)范圍內(nèi)是增函數(shù).
問題:
(1)下列函數(shù)中.①y=-2x(x為全體實(shí)數(shù));②數(shù)學(xué)公式(x>0);③數(shù)學(xué)公式(x>0);在給定自變量x的取值范圍內(nèi),是增函數(shù)的有______.
(2)對(duì)于函數(shù)y=x2-2x+1,當(dāng)自變量x______時(shí),函數(shù)值y隨x的增大而增大.
(3)說明函數(shù)y=-x2+4x,當(dāng)x<2時(shí)是增函數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

先閱讀下面材料,再回答問題.
一般地,如果函數(shù)y的自變量x在a<x<b范圍內(nèi),對(duì)于任意x1,x2,當(dāng)a<x1<x2<b時(shí),總是有y1<y2(yn是與xn對(duì)應(yīng)的函數(shù)值),那么就說函數(shù)y在a<x<b范圍內(nèi)是增函數(shù).
例如:函數(shù)y=x2在正實(shí)數(shù)范圍內(nèi)是增函數(shù).
證明:在正實(shí)數(shù)范圍內(nèi)任取x1,x2,若x1<x2
則y1-y2=x12-x22=( x1-x2)( x1+x2
因?yàn)閤1>0,x2>0,x1<x2
所以x1+x2>0,x1-x2<0,( x1-x2)( x1+x2)<0
即y1-y2<0,亦即y1<y2,也就是當(dāng)x1<x2時(shí),y1<y2
所以函數(shù)y=x2在正實(shí)數(shù)范圍內(nèi)是增函數(shù).
問題:
(1)下列函數(shù)中.①y=-2x(x為全體實(shí)數(shù));②y=-
2
x
(x>0);③y=
1
x
(x>0);在給定自變量x的取值范圍內(nèi),是增函數(shù)的有______.
(2)對(duì)于函數(shù)y=x2-2x+1,當(dāng)自變量x______時(shí),函數(shù)值y隨x的增大而增大.
(3)說明函數(shù)y=-x2+4x,當(dāng)x<2時(shí)是增函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案