【題目】如圖,ABC 中,AB=AC=BC,∠BDC=120°BD=DC,現(xiàn)以D為頂點(diǎn)作一個(gè)60°角,使角兩邊分別交ABAC邊所在直線于M,N兩點(diǎn),連接MN,探究線段BMMN、NC之間的關(guān)系,并加以證明.

1)如圖1,若∠MDN的兩邊分別交AB,AC邊于MN兩點(diǎn).猜想:BM+NC=MN.延長(zhǎng)AC到點(diǎn)E,使CE=BM,連接DE,再證明兩次三角形全等可證.請(qǐng)你按照該思路寫出完整的證明過(guò)程;

2)如圖2,若點(diǎn)M、N分別是ABCA的延長(zhǎng)線上的一點(diǎn),其它條件不變,再探究線段BM,MN,NC之間的關(guān)系,請(qǐng)直接寫出你的猜想(不用證明).

【答案】1)過(guò)程見(jiàn)解析;(2MN= NCBM

【解析】

1)延長(zhǎng)ACE,使得CE=BM并連接DE,根據(jù)△BDC為等腰三角形,△ABC為等邊三角形,可以證得△MBD≌△ECD,可得MD=DE,∠BDM=CDE,再根據(jù)∠MDN =60°,∠BDC=120°,可證∠MDN =NDE=60°,得出△DMN≌△DEN,進(jìn)而得到MN=BM+NC
2)在CA上截取CE=BM,利用(1)中的證明方法,先證△BMD≌△CEDSAS),再證△MDN≌△EDNSAS),即可得出結(jié)論.

解:(1)如圖示,延長(zhǎng)ACE,使得CE=BM,并連接DE

∵△BDC為等腰三角形,△ABC為等邊三角形,

∴BD=CD∠DBC=∠DCB,∠MBC=∠ACB=60°

BD=DC,且∠BDC=120°,

∴∠DBC=DCB=30°

∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°

∴∠MBD=∠ECD=90°,

△MBD△ECD中,

∴△MBD≌△ECDSAS),

∴MD=DE,∠BDM=∠CDE

∵∠MDN =60°,∠BDC=120°

∴∠CDE+NDC =BDM+NDC=120°-60°=60°,

即:∠MDN =NDE=60°,

△DMN△DEN中,

,

∴△DMN≌△DENSAS),

∴MN=NE=CE+NC=BM+NC

2)如圖中,結(jié)論:MN=NC﹣BM

理由:在CA上截取CE=BM

∵△ABC是正三角形,

∴∠ACB=∠ABC=60°,

∵BD=CD∠BDC=120°,

∴∠BCD=∠CBD=30°

∴∠MBD=∠DCE=90°,

△BMD△CED

,

∴△BMD≌△CEDSAS),

∴DM= DE,∠BDM=∠CDE

∵∠MDN =60°,∠BDC=120°,

∴∠NDE=BDC-(∠BDN+CDE=BDC-(∠BDN+BDM=BDC-MDN=120°-60°=60°,

即:∠MDN =NDE=60°

△MDN△EDN

,

∴△MDN≌△EDNSAS),

∴MN =NE=NC﹣CE=NC﹣BM

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,在中,,.動(dòng)點(diǎn)從點(diǎn)出發(fā),沿向點(diǎn)運(yùn)動(dòng),動(dòng)點(diǎn)從點(diǎn)出發(fā),沿向點(diǎn)運(yùn)動(dòng),如果動(dòng)點(diǎn)1,2的速度同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為,解答下列問(wèn)題:

1)當(dāng)__________時(shí),

2)連接

①當(dāng)時(shí),求線段的長(zhǎng);

②在運(yùn)動(dòng)過(guò)程中,的形狀不斷發(fā)生變化,它能否構(gòu)成直角三角形?如果能則求出此時(shí)的值,如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,己知A(0,8),B(6,0),點(diǎn)M、N分別是線段AB、AO上的動(dòng)點(diǎn),點(diǎn)M從點(diǎn)B出發(fā),以每秒2個(gè)單位的速度向點(diǎn)A運(yùn)動(dòng),點(diǎn)N從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度向點(diǎn)O運(yùn)動(dòng),點(diǎn)M、N中有一個(gè)點(diǎn)停止時(shí),另一個(gè)點(diǎn)也停止。設(shè)運(yùn)動(dòng)時(shí)間為t秒。

(1)當(dāng)t為何值時(shí),MAB的中點(diǎn)

(2)當(dāng)t為何值時(shí),△AMN為直角三角形;

(3)當(dāng)t為何值時(shí),△AMN是等腰三角形?并求此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校舉辦校級(jí)籃球賽,進(jìn)入決賽的隊(duì)伍有A、B、C、D,要從中選出兩隊(duì)打一場(chǎng)比賽.

(1)若已確定A打第一場(chǎng),再?gòu)钠溆嗳?duì)中隨機(jī)選取一隊(duì),求恰好選中D隊(duì)的概率.

(2)請(qǐng)用畫樹(shù)狀圖或列表法,求恰好選中B、C兩隊(duì)進(jìn)行比賽的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電信公司給用戶提供了兩種手機(jī)上網(wǎng)計(jì)費(fèi)方式:

方式:以每分鐘0.1元的價(jià)格按上網(wǎng)時(shí)間計(jì)費(fèi);

方式:除收月租費(fèi)20元外,再以每分鐘0.06元的價(jià)格按上網(wǎng)時(shí)間計(jì)費(fèi).

假設(shè)用戶甲一個(gè)月手機(jī)上網(wǎng)的時(shí)間共有分鐘,上網(wǎng)的費(fèi)用為元.

1)分別寫出用戶甲按兩種方式計(jì)費(fèi)的上網(wǎng)費(fèi)元與上網(wǎng)時(shí)間分鐘之間的函數(shù)關(guān)系式;

2)如果該用戶每月通話時(shí)間400分鐘,選擇哪種計(jì)費(fèi)方式更合算?

3)如果該用戶每月上網(wǎng)費(fèi)為80元,選擇哪種計(jì)費(fèi)方式更合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有七張正面分別標(biāo)有數(shù)字﹣1、﹣2、0、1、2、3、4的卡片,除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中隨機(jī)抽取一張,記卡片上的數(shù)字為m,則使關(guān)于x的方程 + =2的解為正數(shù),且不等式組 無(wú)解的概率是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在陽(yáng)光體育活動(dòng)時(shí)間,小亮、小瑩、小芳和大剛到學(xué)校乒乓球室打乒乓球,當(dāng)時(shí)只有一副空球桌,他們只能選兩人打第一場(chǎng).

(1)如果確定小亮打第一場(chǎng),再?gòu)钠溆嗳酥须S機(jī)選取一人打第一場(chǎng),求恰好選中大剛的概率;

(2)如果確定小亮做裁判,用“手心、手背”的方法決定其余三人哪兩人打第一場(chǎng).游戲規(guī)則是:三人同時(shí)伸“手心、手背”中的一種手勢(shì),如果恰好有兩人伸出的手勢(shì)相同,那么這兩人上場(chǎng),否則重新開(kāi)始,這三人伸出“手心”或“手背”都是隨機(jī)的,請(qǐng)用畫樹(shù)狀圖的方法求小瑩和小芳打第一場(chǎng)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠B=90°,AB=12,BC=24,動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿邊AB向終點(diǎn)B以每秒2個(gè)單位長(zhǎng)度的速度移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始沿邊BC以每秒4個(gè)單位長(zhǎng)度的速度向終點(diǎn)C移動(dòng),如果點(diǎn)P、Q分別從點(diǎn)A、B同時(shí)出發(fā),那么△PBQ的面積S隨出發(fā)時(shí)間t(s)如何變化?寫出函數(shù)關(guān)系式及t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2bxc圖象的一部分如圖所示.已知它的頂點(diǎn)M在第二象限,且經(jīng)過(guò)點(diǎn)A(1,0)和點(diǎn)B(0,l).若此二次函數(shù)的圖象與x軸的另一個(gè)交點(diǎn)為C.

(1)試求ab所滿足的關(guān)系式;

(2)當(dāng)AMC的面積為ABC面積的倍時(shí),求a的值;

(3)是否存在實(shí)數(shù)a,使得ABC為直角三角形.若存在,請(qǐng)求出a的值;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案