(2010•雙鴨山)Rt△ABC中,∠BAC=90°,AB=AC=2.以AC為一邊,在△ABC外部作等腰直角三角形ACD,則線段BD的長為   
【答案】分析:分情況討論,①以A為直角頂點,向外作等腰直角三角形DAC;②以C為直角頂點,向外作等腰直角三角形ACD;③以AC為斜邊,向外作等腰直角三角形ADC.分別畫圖,并求出BD.
解答:解:①以A為直角頂點,向外作等腰直角三角形DAC,

∵∠DAC=90°,且AD=AC,
∴BD=BA+AD=2+2=4;
②以C為直角頂點,向外作等腰直角三角形ACD,

連接BD,過點D作DE⊥BC,交BC的延長線于E.
∵△ABC是等腰直角三角形,∠ACD=90°,
∴∠DCE=45°,
又∵DE⊥CE,
∴∠DEC=90°,
∴∠CDE=45°,
∴CE=DE=2×=
在Rt△BAC中,BC==2,
∴BD===2;
③以AC為斜邊,向外作等腰直角三角形ADC,

∵∠ADC=90°,AD=DC,且AC=2,
∴AD=DC=ACsin45°=2×=
又∵△ABC、△ADC是等腰直角三角形,
∴∠ACB=∠ACD=45°,
∴∠BCD=90°,
又∵在Rt△ABC中,BC==2
∴BD===
故BD的長等于4或2
點評:分情況考慮問題,主要利用了等腰直角三角形的性質(zhì)、勾股定理等知識.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2010年黑龍江省綏化市中考數(shù)學試卷(解析版) 題型:解答題

(2010•雙鴨山)如圖,在平面直角坐標系中,函數(shù)y=2x+12的圖象分別交x軸,y軸于A,B兩點過點A的直線交y軸正半軸與點M,且點M為線段OB的中點.
(1)求直線AM的函數(shù)解析式.
(2)試在直線AM上找一點P,使得S△ABP=S△AOB,請直接寫出點P的坐標.
(3)若點H為坐標平面內(nèi)任意一點,在坐標平面內(nèi)是否存在這樣的點H,使以A,B,M,H為頂點的四邊形是等腰梯形?若存在,請直接寫出點H的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年黑龍江省綏化市中考數(shù)學試卷(解析版) 題型:解答題

(2010•雙鴨山)已知二次函數(shù)的圖象經(jīng)過點(0,3),(-3,0),(2,-5),且與x軸交于A、B兩點.
(1)試確定此二次函數(shù)的解析式;
(2)判斷點P(-2,3)是否在這個二次函數(shù)的圖象上?如果在,請求出△PAB的面積;如果不在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年黑龍江省齊齊哈爾市中考數(shù)學試卷(解析版) 題型:解答題

(2010•雙鴨山)如圖,在平面直角坐標系中,函數(shù)y=2x+12的圖象分別交x軸,y軸于A,B兩點過點A的直線交y軸正半軸與點M,且點M為線段OB的中點.
(1)求直線AM的函數(shù)解析式.
(2)試在直線AM上找一點P,使得S△ABP=S△AOB,請直接寫出點P的坐標.
(3)若點H為坐標平面內(nèi)任意一點,在坐標平面內(nèi)是否存在這樣的點H,使以A,B,M,H為頂點的四邊形是等腰梯形?若存在,請直接寫出點H的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年黑龍江省大興安嶺地區(qū)中考數(shù)學試卷(解析版) 題型:解答題

(2010•雙鴨山)如圖,在平面直角坐標系中,函數(shù)y=2x+12的圖象分別交x軸,y軸于A,B兩點過點A的直線交y軸正半軸與點M,且點M為線段OB的中點.
(1)求直線AM的函數(shù)解析式.
(2)試在直線AM上找一點P,使得S△ABP=S△AOB,請直接寫出點P的坐標.
(3)若點H為坐標平面內(nèi)任意一點,在坐標平面內(nèi)是否存在這樣的點H,使以A,B,M,H為頂點的四邊形是等腰梯形?若存在,請直接寫出點H的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年黑龍江省大興安嶺地區(qū)中考數(shù)學試卷(解析版) 題型:解答題

(2010•雙鴨山)因南方旱情嚴重,乙水庫的蓄水量以每天相同的速度持續(xù)減少.為緩解旱情,北方甲水庫立即以管道運輸?shù)姆绞浇o予以支援下圖是兩水庫的蓄水量y(萬米3)與時間x(天)之間的函數(shù)圖象.在單位時間內(nèi),甲水庫的放水量與乙水庫的進水量相同(水在排放、接收以及輸送過程中的損耗不計).通過分析圖象回答下列問題:
(1)甲水庫每天的放水量是多少萬立方米?
(2)在第幾天時甲水庫輸出的水開始注入乙水庫?此時乙水庫的蓄水量為多少萬立方米?
(3)求直線AD的解析式.

查看答案和解析>>

同步練習冊答案