【題目】如圖,為測量一座山峰CF的高度,將此山的某側(cè)山坡劃分為AB和BC兩段,每一段山坡近似是“直”的,測得坡長AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.
(1)求AB段山坡的高度EF;
(2)求山峰的高度CF.( 1.414,CF結(jié)果精確到米)

【答案】
(1)解:作BH⊥AF于H,如圖,

在Rt△ABH中,∵sin∠BAH= ,

∴BH=800sin30°=400,

∴EF=BH=400m


(2)解:在Rt△CBE中,∵sin∠CBE= ,

∴CE=200sin45°=100 ≈141.4,

∴CF=CE+EF=141.4+400≈541(m).

答:AB段山坡高度為400米,山CF的高度約為541米.


【解析】(1)作BH⊥AF于H,如圖,在Rt△ABH中根據(jù)正弦的定義可計(jì)算出BH的長,從而得到EF的長;(2)先在Rt△CBE中利用∠CBE的正弦計(jì)算出CE,然后計(jì)算CE和EF的和即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用關(guān)于坡度坡角問題的相關(guān)知識可以得到問題的答案,需要掌握坡面的鉛直高度h和水平寬度l的比叫做坡度(坡比).用字母i表示,即i=h/l.把坡面與水平面的夾角記作A(叫做坡角),那么i=h/l=tanA.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某賓館客房部有60個(gè)房間供游客居住,當(dāng)每個(gè)房間的定價(jià)為每天200元時(shí),房間可以住滿.當(dāng)每個(gè)房間每天的定價(jià)每增加10元時(shí),就會有一個(gè)房間空閑.對有游客入住的房間,賓館需對每個(gè)房間每天支出20元的各種費(fèi)用. 設(shè)每個(gè)房間每天的定價(jià)增加x元.求:
(1)房間每天的入住量y(間)關(guān)于x(元)的函數(shù)關(guān)系式;
(2)該賓館每天的房間收費(fèi)p(元)關(guān)于x(元)的函數(shù)關(guān)系式;
(3)該賓館客房部每天的利潤w(元)關(guān)于x(元)的函數(shù)關(guān)系式;當(dāng)每個(gè)房間的定價(jià)為每天多少元時(shí),w有最大值?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程2x2+kx﹣1=0 ①若方程有兩個(gè)相等的實(shí)數(shù)根,求k的值;
②若方程的一個(gè)根是x=﹣1,求另一個(gè)根及k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=x2+3x+2的圖象如圖1所示,根據(jù)圖象回答問題:
(1)當(dāng)x時(shí),x2+3x+2>0;
(2)在上述問題的基礎(chǔ)上,探究解決新問題: ①函數(shù)y= 的自變量x的取值范圍是;
②如表是函數(shù)y= 的幾組y與x的對應(yīng)值.

x

﹣7

﹣6

﹣4

﹣3

﹣2

﹣1

0

1

3

4

y

5.477…

4.472…

2.449…

1.414…

0

0

1.414…

2.449…

4.472…

5.477…

如圖2,在平面直角坐標(biāo)系xOy中,描出了上表中各對對應(yīng)值為坐標(biāo)的點(diǎn)的大概位置,請你根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象:
③寫出該函數(shù)的一條性質(zhì):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,∠DAB=130°,連接OC,點(diǎn)P是半徑OC上任意一點(diǎn),連接DP,BP,則∠BPD可能為度(寫出一個(gè)即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(10,0),B(4,8),C(0,8),連接AB,BC,點(diǎn)P在x軸上,從原點(diǎn)O出發(fā),以每秒1個(gè)單位長度的速度向點(diǎn)A運(yùn)動,同時(shí)點(diǎn)M從點(diǎn)A出發(fā),以每秒2個(gè)單位長度的速度沿折線A﹣B﹣C向點(diǎn)C運(yùn)動,其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動,設(shè)P,M兩點(diǎn)運(yùn)動的時(shí)間為t秒.

(1)求AB長;
(2)設(shè)△PAM的面積為S,當(dāng)0≤t≤5時(shí),求S與t的函數(shù)關(guān)系式,并指出S取最大值時(shí),點(diǎn)P的位置;
(3)t為何值時(shí),△APM為直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1個(gè)單位長度的小正方形組成的網(wǎng)格中,建立如圖所示的平面直角坐標(biāo)系,請按要求完成下面的問題:
(1)以圖中的點(diǎn)O為位似中心,將△ABC作位似變換且同向放大到原來的兩倍,得到△A1B1C1;
(2)若△ABC內(nèi)一點(diǎn)P的坐標(biāo)為(a,b),則位似變化后對應(yīng)的點(diǎn)P′的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A,B兩點(diǎn)的坐標(biāo)分別為(40,0)和(0,30),動點(diǎn)P從點(diǎn)A開始在線段AO上以每秒2個(gè)長度單位的速度向原點(diǎn)O運(yùn)動、動直線EF從x軸開始以每1個(gè)單位的速度向上平行移動(即EF∥x軸),并且分別與y軸、線段AB交于點(diǎn)E,F(xiàn),連接EP,F(xiàn)P,設(shè)動點(diǎn)P與動直線EF同時(shí)出發(fā),運(yùn)動時(shí)間為t秒.
(1)求t=15時(shí),△PEF的面積;
(2)直線EF、點(diǎn)P在運(yùn)動過程中,是否存在這樣的t,使得△PEF的面積等于160(平方單位)?若存在,請求出此時(shí)t的值;若不存在,請說明理由.
(3)當(dāng)t為何值時(shí),△EOP與△BOA相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖的網(wǎng)格圖中,每個(gè)小正方形的邊長均為1個(gè)單位,在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)試在圖中做出△ABC以A為旋轉(zhuǎn)中心,沿順時(shí)針方向旋轉(zhuǎn)90°后的圖形△AB1C1
(2)若點(diǎn)B的坐標(biāo)為(﹣3,5),試在圖中畫出平面直角坐標(biāo)系,并標(biāo)出A、C兩點(diǎn)的坐標(biāo);
(3)根據(jù)(2)的坐標(biāo)系,以B為位似中心,做△BA2C2 , 使△BA2C2與△ABC位似,且△BA2C2與△ABC位似比為2:1,并直接寫出A2的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案