如圖,已知AB是⊙O的弦,C是⊙O上的一個動點,連接AC、BC,∠C=60°,⊙O的半徑為2,則△ABC面積的最大值是( )

A.
B.
C.
D.
【答案】分析:過C作CM⊥AB于M,要使△ACB的面積最大,只要CM取最大值即可,畫出CM,求出等邊三角形ABC,求出AB和CM,關(guān)鍵三角形的面積公式求出即可.
解答:解:過C作CM⊥AB于M,
∵弦AB已確定,
∴要使△ACB的面積最大,只要CM取最大值即可,
如圖所示,當(dāng)CM過圓心O時,CM最大,
∵CM⊥AB,CM過O,
∴AM=BM(垂徑定理),
∴AC=BC,
∵∠ACB=60°,
∴△ABC是等邊三角形,
設(shè)AB=BC=AC=a,
則AM=BM=a,由勾股定理得:CM=a,
在Rt△OBM中,OB=2,OM=a-2,bm=a,由勾股定理得:(a-2)2+(a)2=22,
a=2
即AB=2,CM=3,
則△ABC的面積是×AB×CM=×2×3=3,
故選A.
點評:本題考查了等邊三角形的性質(zhì)和判定,三角形的面積,勾股定理,垂徑定理等等知識點的綜合運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,AC是弦,D為AB延長線上一點,DC=AC,∠ACD=120°,BD=10.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)求扇形BOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,C是⊙O上一點,∠BAC的平分線交⊙O于點D,交⊙O的切線BE于點E,過點D作DF⊥AC,交AC的延長線于點F.
(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2
①求
BEAD
值;
②求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•泰安)如圖,已知AB是⊙O的直徑,AD切⊙O于點A,點C是
EB
的中點,則下列結(jié)論不成立的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB是⊙O的直徑,P為⊙O外一點,且OP∥BC,∠P=∠BAC.
求證:PA為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB是圓O的直徑,∠DAB的平分線AC交圓O與點C,作CD⊥AD,垂足為點D,直線CD與AB的延長線交于點E.
(1)求證:直線CD為圓O的切線.
(2)當(dāng)AB=2BE,DE=2
3
時,求AD的長.

查看答案和解析>>

同步練習(xí)冊答案