如圖,若∠1=52°,那么∠C=________°,才能使直線ABCD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,有兩個(gè)形狀完全相同的直角三角形ABC和EFG疊放在一起(點(diǎn)A與點(diǎn)E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜邊上的中點(diǎn).
如圖②,若整個(gè)△EFG從圖①的位置出發(fā),以1cm/s的速度沿射線AB方向平移,在△EFG平移的同時(shí),點(diǎn)P從△EFG的頂點(diǎn)G出發(fā),以1cm/s的速度在直角邊GF上向點(diǎn)F運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)F時(shí),點(diǎn)P停止運(yùn)動(dòng),△EFG也隨之停止平移.設(shè)運(yùn)動(dòng)時(shí)間為x(s),F(xiàn)G的延長(zhǎng)線交AC于H,四邊形OAHP的面積為y(cm2)(不考慮點(diǎn)P與G、F重合的情況).
精英家教網(wǎng)
(1)當(dāng)x為何值時(shí),OP∥AC;
(2)求y與x之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍;
(3)是否存在某一時(shí)刻,使四邊形OAHP面積與△ABC面積的比為13:24?若存在,求出x的值;若不存在,說(shuō)明理由.(參考數(shù)據(jù):1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(人教版)已知平面直角坐標(biāo)系中,B(-3,0),A為y軸正半軸上一動(dòng)點(diǎn),半徑為
5
2
的⊙A交y軸于點(diǎn)G、H(點(diǎn)G在點(diǎn)H的上方),連接BG交⊙A于點(diǎn)C.
精英家教網(wǎng)精英家教網(wǎng)
(1)如圖①,當(dāng)⊙A與x軸相切時(shí),求直線BG的解析式;
(2)如圖②,若CG=2BC,求OA的長(zhǎng);
(3)如圖③,D為半徑AH上一點(diǎn),且AD=1,過(guò)點(diǎn)D作⊙A的弦CE,連接GE并延長(zhǎng)交x軸于點(diǎn)F,當(dāng)⊙A與x軸相離時(shí),給出下列結(jié)論:①
OG2
OF
的值不變;②OG•OF的值不變.其中有且只有一個(gè)結(jié)論是正確的,請(qǐng)你判斷哪一個(gè)結(jié)論正確,證明正確的結(jié)論并求出其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,若直線y=kx+b(k≠0)與x軸交于點(diǎn)A(
5
2
,0)
,與雙曲線y=
m
x
(m≠0)
在第二象精英家教網(wǎng)限交于點(diǎn)B,且OA=OB,△OAB的面積為
5
2

(1)求直線AB的解析式及雙曲線的解析式;
(2)求tan∠ABO的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•本溪一模)(1)已知,如圖①,Rt△ABC∽R(shí)t△AB′C′,相似比為k,∠ACB=∠AC′B′=90°,且∠A=30°,將△AB′C′繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α后,點(diǎn)C′恰好在邊BC的延長(zhǎng)線上,如圖②,若四邊形ABB′C′是矩形,求α的度數(shù)及k的值;
(2)如圖③,等腰△ABC∽等腰△AB′C′,相似比為k,AB=AC,AB′=AC′,∠A=36°,將△AB′C′繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α后,點(diǎn)B′恰好在BC邊的延長(zhǎng)線上,如圖④,若AC′∥BB′,①判斷四邊形ABB′C′的形狀并說(shuō)明理由;②α=
72°
72°
,k=
-1+
5
2
-1+
5
2

查看答案和解析>>

同步練習(xí)冊(cè)答案