(2013•樂(lè)山)如圖,已知第一象限內(nèi)的點(diǎn)A在反比例函數(shù)y=
2
x
的圖象上,第二象限內(nèi)的點(diǎn)B在反比例函數(shù)y=
k
x
的圖象上,且OA⊥OB,cosA=
3
3
,則k的值為( 。
分析:過(guò)A作AE⊥x軸,過(guò)B作BF⊥x軸,由OA與OB垂直,再利用鄰補(bǔ)角定義得到一對(duì)角互余,再由直角三角形BOF中的兩銳角互余,利用同角的余角相等得到一對(duì)角相等,又一對(duì)直角相等,利用兩對(duì)對(duì)應(yīng)角相等的三角形相似得到三角形BOF與三角形OEA相似,在直角三角形AOB中,由銳角三角函數(shù)定義,根據(jù)cos∠BAO的值,設(shè)出AB與OA,利用勾股定理表示出OB,求出OB與OA的比值,即為相似比,根據(jù)面積之比等于相似比的平方,求出兩三角形面積之比,由A在反比例函數(shù)y=
2
x
上,利用反比例函數(shù)比例系數(shù)的幾何意義求出三角形AOE的面積,進(jìn)而確定出BOF的面積,再利用k的集合意義即可求出k的值.
解答:解:過(guò)A作AE⊥x軸,過(guò)B作BF⊥x軸,
∵OA⊥OB,
∴∠AOB=90°,
∴∠BOF+∠EOA=90°,
∵∠BOF+∠FBO=90°,
∴∠EOA=∠FBO,
∵∠BFO=∠OEA=90°,
∴△BFO∽△OEA,
在Rt△AOB中,cos∠BAO=
AO
AB
=
3
3
,
設(shè)AB=
3
,則OA=1,根據(jù)勾股定理得:BO=
2
,
∴OB:OA=
2
:1,
∴S△BFO:S△OEA=2:1,
∵A在反比例函數(shù)y=
2
x
上,
∴S△OEA=1,
∴S△BFO=2,
則k=-4.
故選B
點(diǎn)評(píng):此題屬于反比例函數(shù)綜合題,涉及的知識(shí)有:相似三角形的判定與性質(zhì),銳角三角函數(shù)定義,勾股定理,以及反比例函數(shù)k的幾何意義,熟練掌握相似三角形的判定與性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•樂(lè)山)如圖,在四邊形ABCD中,∠A=45°.直線l與邊AB,AD分別相交于點(diǎn)M,N,則∠1+∠2=
225°
225°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•樂(lè)山)如圖,已知線段AB.
(1)用尺規(guī)作圖的方法作出線段AB的垂直平分線l(保留作圖痕跡,不要求寫出作法);
(2)在(1)中所作的直線l上任意取兩點(diǎn)M,N(線段AB的上方).連結(jié)AM,AN,BM,BN.求證:∠MAN=∠MBN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•樂(lè)山)如圖,山頂有一鐵塔AB的高度為20米,為測(cè)量山的高度BC,在山腳點(diǎn)D處測(cè)得塔頂A和塔基B的仰角分別為60°和45°.求山的高度BC.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•樂(lè)山)如圖,已知直線y=4-x與反比例函數(shù)y=
m
x
(m>0,x>0)的圖象交于A,B兩點(diǎn),與x軸,y軸分別相交于C,D兩點(diǎn).
(1)如果點(diǎn)A的橫坐標(biāo)為1,利用函數(shù)圖象求關(guān)于x的不等式4-x<
m
x
的解集;
(2)是否存在以AB為直徑的圓經(jīng)過(guò)點(diǎn)P(1,0)?若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案