如圖,拋物線經(jīng)過(guò)A(,0),C(2,-3)兩點(diǎn),與y軸交于點(diǎn)D,與x軸交于另一點(diǎn)B.
(1)求此拋物線的解析式及頂點(diǎn)坐標(biāo);
(2)若將此拋物線平移,使其頂點(diǎn)為點(diǎn)D,需如何平移?寫出平移后拋物線的解析式;
(3)過(guò)點(diǎn)P(m,0)作x軸的垂線(1≤m≤2),分別交平移前后的拋物線于點(diǎn)E,F(xiàn),交直線OC于點(diǎn)G,求證:PF=EG.
(1),(,);(2)向左個(gè)單位長(zhǎng)度,再向上平移個(gè)單位長(zhǎng)度.平移后的拋物線解析式為:.(3)證明見解析.

試題分析:(1)把A(-1,0),C(2,-3)代入y=x2+bx+c,得到關(guān)于b、c的二元一次方程組,解方程組求出b、c的值,即可求出拋物線的解析式,再利用配方法將一般式化為頂點(diǎn)式,即可求出頂點(diǎn)坐標(biāo);
(2)先求出拋物線y=x2-x-2與y軸交點(diǎn)D的坐標(biāo)為(0,-2),再根據(jù)平移規(guī)律可知將點(diǎn)(,?)向左平移個(gè)單位長(zhǎng)度,再向上平移個(gè)單位長(zhǎng)度,可得到點(diǎn)D,然后利用頂點(diǎn)式即可寫出平移后的拋物線解析式為:y=x2-2;
(3)先用待定系數(shù)法求直線OC的解析式為y=-x,再將x=m代入,求出yG=?m,yF=m2-2,yE=m2- m-2,再分別計(jì)算得出PF=-(m2-2)=2-m2,EG=yG-yE=2-m2,由此證明PF=EG.
(1)解:把A(,0),C(2,-3)代入得:
,解得: 
∴拋物線的解析式為:

∴其頂點(diǎn)坐標(biāo)為:(,).
(2)、解:向左個(gè)單位長(zhǎng)度,再向上平移個(gè)單位長(zhǎng)度.
平移后的拋物線解析式為:. 
(3)證明:用待定系數(shù)法求直線OC的解析式為y = -x,
當(dāng)x=m時(shí), =,則PF=-()=2-,
當(dāng)x=m時(shí),==,
則EG==2-,
∴PF=EG.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

請(qǐng)寫出一個(gè)開口向下,對(duì)稱軸為直線的拋物線的解析式,y=                 .?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)D為拋物線的頂點(diǎn),點(diǎn)E在拋物線上,點(diǎn)F在x軸上,四邊形OCEF為矩形,且OF=2,EF=3,
(1)求拋物線所對(duì)應(yīng)的函數(shù)解析式;
(2)求△ABD的面積;
(3)將△AOC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)A對(duì)應(yīng)點(diǎn)為點(diǎn)G,問(wèn)點(diǎn)G是否在該拋物線上?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

小明同學(xué)將直角三角板直角頂點(diǎn)置于平面直角坐標(biāo)系的原點(diǎn)O,兩直角邊與拋物線分別相交于A、B兩點(diǎn).小明發(fā)現(xiàn)交點(diǎn)A、B兩點(diǎn)的連線總經(jīng)過(guò)一個(gè)固定點(diǎn),則該點(diǎn)坐標(biāo)為            

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知關(guān)于的一元二次方程
(1)求證:方程總有兩個(gè)實(shí)數(shù)根;
(2)若m為整數(shù),當(dāng)此方程有兩個(gè)互不相等的負(fù)整數(shù)根時(shí),求m的值;
(3)在(2)的條件下,設(shè)拋物線與x軸交點(diǎn)為A、B(點(diǎn)B在點(diǎn)A的右側(cè)),與y軸交于點(diǎn)C.點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)P在直線BC上,且OP=BC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

為鼓勵(lì)大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺(tái)了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價(jià)提供產(chǎn)品給大學(xué)畢業(yè)生自主銷售,成本價(jià)與出廠價(jià)之間的差價(jià)由政府承擔(dān),李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈,已知這種節(jié)能燈的成本價(jià)為每件10元,出廠價(jià)為每件12元,每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系近似滿足一次函數(shù):y=-10x+500.
⑴李明在開始創(chuàng)業(yè)的第一個(gè)月將銷售單價(jià)定為20元,那么政府這個(gè)月為他承擔(dān)的總差價(jià)為多少元?
⑵設(shè)李明獲得的利潤(rùn)為W(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?
⑶物價(jià)部門規(guī)定,這種節(jié)能燈的銷售單價(jià)不得高于25元,如果李明想要每月獲得的利潤(rùn)不低于3000元,那么政府為他承擔(dān)的總差價(jià)最少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(﹣1,0),頂點(diǎn)坐標(biāo)為(1,n),與y軸的交點(diǎn)在(0,2)、(0,3)之間(包含端點(diǎn)),則下列結(jié)論:①當(dāng)x>3時(shí),y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正確的是( 。。
A.①②B.③④C.①④D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知的圖象如圖所示,其對(duì)稱軸為直線x=-1,與x軸的一個(gè)交點(diǎn)為(1,0),與y軸的交點(diǎn)在(0,2)與(0,3)之間(不包含端點(diǎn)),則下列結(jié)論正確的是(    )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

函數(shù)y =ax²(a≠0)與直線y =2x-3的圖像交于點(diǎn)(1,b).
求:(1)a和b的值;
(2)求拋物線y =ax²的開口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo)。

查看答案和解析>>

同步練習(xí)冊(cè)答案