【題目】如圖,已知點(diǎn)A是雙曲線 在第一象限分支上的一個(gè)動(dòng)點(diǎn),連結(jié)AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為邊作等邊三角形ABC,點(diǎn)C在第四象限內(nèi),且隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也在不斷變化,但點(diǎn)C始終在雙曲線 上運(yùn)動(dòng),則k的值是

【答案】﹣3
【解析】解:∵雙曲線 的圖象關(guān)于原點(diǎn)對(duì)稱(chēng), ∴點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)對(duì)稱(chēng),
∴OA=OB,
連接OC,如圖所示,
∵△ABC是等邊三角形,OA=OB,
∴OC⊥AB.∠BAC=60°,
∴tan∠OAC= = ,
∴OC= OA,
過(guò)點(diǎn)A作AE⊥y軸,垂足為E,過(guò)點(diǎn)C作CF⊥y軸,垂足為F,
∵AE⊥OE,CF⊥OF,OC⊥OA,
∴∠AEO=∠OFC,∠AOE=90°﹣∠FOC=∠OCF,
∴△OFC∽△AEO,相似比 ,
∴面積比 ,
∵點(diǎn)A在第一象限,設(shè)點(diǎn)A坐標(biāo)為(a,b),
∵點(diǎn)A在雙曲線 上,
∴SAEO= ab= ,
∴SOFC= FCOF= ,
∴設(shè)點(diǎn)C坐標(biāo)為(x,y),
∵點(diǎn)C在雙曲線 上,
∴k=xy,
∵點(diǎn)C在第四象限,
∴FC=x,OF=﹣y.
∴FCOF=x(﹣y)=﹣xy=﹣ ,
所以答案是:﹣3
【考點(diǎn)精析】根據(jù)題目的已知條件,利用等邊三角形的性質(zhì)和相似三角形的判定與性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°;相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知△ABC是等腰直角三角形,∠BAC=90°,點(diǎn)D是BC的中點(diǎn).作正方形DEFG,使點(diǎn)A、C分別在DG和DE上,連接AE,BG.

(1)求證:AE=BG
(2)將正方形DEFG繞點(diǎn)D逆時(shí)針?lè)较蛐D(zhuǎn)α(0°<α≤360°)如圖2所示,判斷(1)中的結(jié)論是否仍然成立?如果仍成立,請(qǐng)給予證明;如果不成立,請(qǐng)說(shuō)明理由;
(3)若BC=DE=4,當(dāng)旋轉(zhuǎn)角α為多少度時(shí),AE取得最大值?直接寫(xiě)出AE取得最大值時(shí)α的度數(shù),并利用備用圖畫(huà)出這時(shí)的正方形DEFG,最后求出這時(shí)AF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了解學(xué)生對(duì)新聞、體育、動(dòng)畫(huà)、娛樂(lè)、戲曲五類(lèi)電視節(jié)目最喜愛(ài)的情況,隨機(jī)調(diào)查了若干名學(xué)生,根據(jù)調(diào)查數(shù)據(jù)進(jìn)行整理,繪制了如下的不完整統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)以上的信息,回答下列問(wèn)題:
(1)本次共調(diào)查了名學(xué)生,其中最喜愛(ài)體育的有人;
(2)在扇形統(tǒng)計(jì)圖中,最喜愛(ài)體育的對(duì)應(yīng)扇形的圓心角大小是
(3)小李和小張?jiān)谛侣、體育、動(dòng)畫(huà)三類(lèi)電視節(jié)目中分別有一類(lèi)是自己最喜愛(ài)的節(jié)目,請(qǐng)用樹(shù)狀圖或列表法求兩人恰好最喜愛(ài)同一類(lèi)節(jié)目的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,O為AC中點(diǎn),EF過(guò)O點(diǎn)且EF⊥AC分別交DC于F,交AB于E,點(diǎn)G是AE中點(diǎn)且∠AOG=30°,則下列結(jié)論正確的個(gè)數(shù)為( ) ⑴DC=3OG;(2)OG= BC;(3)△OGE是等邊三角形;(4)SAOE= SABCD

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形OABC中,AO=10,AB=8,沿直線CD折疊矩形OABC的一邊BC,使點(diǎn)B落在OA邊上的點(diǎn)E處.分別以O(shè)C,OA所在的直線為x軸,y軸建立平面直角坐標(biāo)系,拋物線y=ax2+bx+c經(jīng)過(guò)O,D,C三點(diǎn).

(1)求AD的長(zhǎng)及拋物線的解析式;
(2)一動(dòng)點(diǎn)P從點(diǎn)E出發(fā),沿EC以每秒2個(gè)單位長(zhǎng)的速度向點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CO以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)O運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),以P、Q、C為頂點(diǎn)的三角形與△ADE相似?
(3)點(diǎn)N在拋物線對(duì)稱(chēng)軸上,點(diǎn)M在拋物線上,是否存在這樣的點(diǎn)M與點(diǎn)N,使以M,N,C,E為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)M與點(diǎn)N的坐標(biāo)(不寫(xiě)求解過(guò)程);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+(m﹣1)x+m(m>1)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,3).

(1)求拋物線的解析式;
(2)點(diǎn)D和點(diǎn)C關(guān)于拋物線的對(duì)稱(chēng)軸對(duì)稱(chēng),點(diǎn)你F在直線AD上方的拋物線上,F(xiàn)G⊥AD于G,F(xiàn)H∥x軸交直線AD于H,求△FGH的周長(zhǎng)的最大值;
(3)點(diǎn)M是拋物線的頂點(diǎn),直線l垂直于直線AM,與坐標(biāo)軸交于P、Q兩點(diǎn),點(diǎn)R在拋物線的對(duì)稱(chēng)軸上,使得△PQR是以PQ為斜邊的等腰直角三角形,求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為9,將正方形折疊,使D點(diǎn)落在BC邊上的點(diǎn)E處,折痕為GH.若BE:EC=2:1,則線段CH的長(zhǎng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D是△ABC的邊AB上一點(diǎn),CN∥AB,DN交AC于點(diǎn)M,若MA=MC.
(1)求證:CD=AN;
(2)若AC⊥DN,∠CAN=30°,MN=1,求四邊形ADCN的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,在平面直角坐標(biāo)系中直線y=x﹣2與y軸相交于點(diǎn)A,與反比例函數(shù)在第一象限內(nèi)的圖象相交于點(diǎn)B(m,2).
(1)求反比例函數(shù)的關(guān)系式;
(2)將直線y=x﹣2向上平移后與反比例函數(shù)圖象在第一象限內(nèi)交于點(diǎn)C,且△ABC的面積為18,求平移后的直線的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案