分析 過點D作DG⊥BC于點G,根據(jù)四邊形BDCE是菱形可知BD=CD,再由BC=2,∠D=60°可得出△BCD是等邊三角形,由銳角三角函數(shù)的定義求出GD及CG的長即可得出結(jié)論.
解答 解:過點D作DG⊥BC于點G,
∵四邊形BDCE是菱形,
∴BD=CD.
∵BC=2,∠D=60°,
∴△BCD是等邊三角形,
∴BD=BC=CD=2,
∴CG=1,GD=CD•sin60°=2×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$,
∴D(2+$\sqrt{3}$,1).
故答案為:(2+$\sqrt{3}$,1).
點評 本題考查的是正方形的性質(zhì),根據(jù)題意作出輔助線,利用菱形的性質(zhì)判斷出△BCD是等邊三角形是解答此題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | x<2 | B. | x>5 | C. | 2<x<5 | D. | 0<x<2或x>5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
活動形式 | 征文 | 講故事 | 演講 | 網(wǎng)上競答 | 其他 |
人數(shù) | 60 | 30 | 39 | a | b |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 內(nèi)部 | B. | 外部 | C. | 邊上 | D. | 以上都有可能 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com