如圖,在△OAB中,OA=OB=2,∠OAE=30°,⊙O切AB于E,且分別交OA、OB于C、D,求圖中陰影部分的面積.

【答案】分析:由圖易知:陰影部分的面積=三角形的面積-扇形的面積.所以要求陰影部分的面積,就要通過(guò)解直角三角形,求得∠AOB的度數(shù)以及圓的半徑OC的長(zhǎng).可連接OE,在構(gòu)建的Rt△AOE中,求得上述值.
解答:解:連接OE.
∵⊙O切AB于E,∴OE⊥AB,∴∠OEA=90度.
在Rt△OEA中,∠OAE=30°,OA=2
∴OE=OA=1,∠AOE=60°.
∴AE==
∵OE⊥AB,OB=OA,
∴BE=2AE=2,∠AOB=2∠OBE=120°.
∴S陰影=S△OAB-S扇形OCD=AB•OE-=-
點(diǎn)評(píng):本題主要考查了解直角三角形的應(yīng)用和扇形的面積公式的計(jì)算方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•瀘州)如圖,在△OAB中,C是AB的中點(diǎn),反比例函數(shù)y=
k
x
 (k>0)在第一象限的圖象經(jīng)過(guò)A、C兩點(diǎn),若△OAB面積為6,則k的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△OAB中,OA=OB,以點(diǎn)O為圓心的⊙0經(jīng)過(guò)AB的中點(diǎn)C,直線AO與⊙0相交于點(diǎn)D、E,連接CD、CE.
(1)求證:AB是⊙0的切線;
(2)求證:△ACD∽△AEC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△OAB中,C是AB的中點(diǎn),反比例函數(shù)y=
kx
(k>0)在第一象限的圖象經(jīng)過(guò)A,C兩點(diǎn),若△OAB面積為6,則k的值為
4
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△OAB中,∠B=90°,∠BOA=30°,OA=4,將△OAB繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)至△OA′B′,C點(diǎn)的坐標(biāo)為(0,4).
(1)求A′點(diǎn)的坐標(biāo);
(2)求過(guò)C,A′,A三點(diǎn)的拋物線y=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)(創(chuàng)新學(xué)習(xí))如圖,在△OAB中,∠B=90°,∠BOA=30°,OA=4,將△OAB繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)至△OA′B′,C點(diǎn)的坐標(biāo)為(0,4).
(1)求A′點(diǎn)的坐標(biāo);
 

(2)求過(guò)C,A′,A三點(diǎn)的拋物線y=ax2+bx+c的解析式;
 

(3)在(2)中的拋物線上是否存在點(diǎn)P,使以O(shè),A,P為頂點(diǎn)的三角形是等腰直角三角形?若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案