如圖,在△ABC中,∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交點(diǎn),求∠ABE、∠ACF和∠BHC的度數(shù).
分析:由三角形的內(nèi)角和是180°,可求∠A=60°.又因?yàn)锽E是AC邊上的高,所以∠AEB=90°,所以∠ABE=30°.同理,∠ACF=30度,又因?yàn)椤螧HC是△CEH的一個(gè)外角,所以∠BHC=120°.
解答:解:∵∠ABC=66°,∠ACB=54°,
∴∠A=180°-∠ABC-∠ACB=180°-66°-54°=60°.
又∵BE是AC邊上的高,所以∠AEB=90°,
∴∠ABE=180°-∠BAC-∠AEB=180°-90°-60°=30°.
同理,∠ACF=30°,
∴∠BHC=∠BEC+∠ACF=90°+30°=120°.
點(diǎn)評(píng):此題主要考查了三角形外角的性質(zhì)及三角形的內(nèi)角和定理,求角的度數(shù)常常要用到“三角形的內(nèi)角和是180°”這一隱含的條件;三角形的外角通常情況下是轉(zhuǎn)化為內(nèi)角來(lái)解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫(huà)出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫(huà)出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案