【題目】如圖正方形網(wǎng)格中的△ABC,若小方格邊長(zhǎng)為1,請(qǐng)你根據(jù)所學(xué)的知識(shí)。

1)求△ABC的面積;

2)判斷△ABC是什么形狀?并說(shuō)明理由

【答案】113;(2ABC是直角三角形

【解析】試題分析:1)用矩形的面積減去三個(gè)小三角形的面積即可求出△ABC的面積;(2)根據(jù)勾股定理求得△ABC各邊的長(zhǎng),再利用勾股定理的逆定理即可得ABC的形狀

試題解析:

1ABC的面積=4×81×8÷22×3÷26×4÷2=13,故ABC的面積為13

2∵正方形小方格邊長(zhǎng)為1,

AC=, ,

∵在ABC 中,AB2+BC2=13+52=65AC2=65,

AB2+BC2=AC2,

∴網(wǎng)格中的ABC是直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 ,對(duì)于任意的x都成立

求(1)a0的值

(2)a0﹣a1+a2﹣a3+a4﹣a5的值

(3)a2+a4的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各組中的四條線段成比例的是(
A.a=1,b=3,c=2,d=4
B.a=4,b=6,c=5,d=10
C.a=2,b=4,c=3,d=6
D.a=2,b=3,c=4,d=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,AD平分BAC,O是AC的中點(diǎn),連接DO,過(guò)點(diǎn)C作CEDA,交DO的延長(zhǎng)線于點(diǎn)E,連接AE.

(1)求證:四邊形ADCE是矩形;

(2)若F是CE上的動(dòng)點(diǎn)(點(diǎn)F不與C、E重合),連接AF、DF、BE,請(qǐng)直接寫(xiě)出圖2中與四邊形ABDF面積相等的所有的三角形和四邊形(四邊形ABDF除外)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義一種對(duì)正整數(shù)n的“F運(yùn)算”: (1.)當(dāng)n為奇數(shù)時(shí),結(jié)果為3n+5;
(2.)當(dāng)n為偶數(shù)時(shí),結(jié)果為 (其中k是使 為奇數(shù)的正整數(shù)),并且運(yùn)算重復(fù)進(jìn)行,
例如,取n=26,則:

若n=449,則第2014次“F運(yùn)算”的結(jié)果是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,折疊長(zhǎng)方形一邊AD,點(diǎn)D落在BC邊的點(diǎn)F處,BC=10cm,AB=8cm。

求:(1)FC的長(zhǎng);

(2)EF的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】要從甲、乙兩名運(yùn)動(dòng)員中選出一名參加“2016里約奧運(yùn)會(huì)”100m比賽,對(duì)這兩名運(yùn)動(dòng)員進(jìn)行了10次測(cè)試,經(jīng)過(guò)數(shù)據(jù)分析,甲、乙兩名運(yùn)動(dòng)員的平均成績(jī)均為10.05s),甲的方差為0.024s2),乙的方差為0.008s2),則這10次測(cè)試成績(jī)比較穩(wěn)定的是 運(yùn)動(dòng)員.(填

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小敏家對(duì)面新建了一幢圖書(shū)大廈,小敏在自家窗口測(cè)得大廈頂部的仰角為45°,大廈底部的仰角為30°,如圖所示,量得兩幢樓之間的距離為20米.

(1)求出大廈的高度BD;

(2)求出小敏家的高度AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】心理學(xué)家研究發(fā)現(xiàn),一般情況下,一節(jié)課40分鐘中,學(xué)生的注意力隨教師講課時(shí)間的變化而變化.開(kāi)始上課時(shí),學(xué)生的注意力逐步增強(qiáng),中間有一段時(shí)間學(xué)生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學(xué)生的注意力開(kāi)始分散.經(jīng)過(guò)實(shí)驗(yàn)分析可知,學(xué)生的注意力指標(biāo)數(shù)y隨時(shí)間x(分鐘)的變化規(guī)律如圖所示(其中AB、BC分別為線段,CD為雙曲線的一部分),請(qǐng)問(wèn):

如果有一道數(shù)學(xué)綜合題,需要講19分鐘,為了效果較好,要求學(xué)生的注意力指標(biāo)數(shù)最低達(dá)到36,那么經(jīng)過(guò)適當(dāng)安排,老師可否在學(xué)生注意力達(dá)到較為理想的穩(wěn)定狀態(tài)下講解完這道題目?

你的結(jié)論是 (填寫(xiě)“可以”或“不可以”),理由是 (請(qǐng)通過(guò)你計(jì)算所得的數(shù)據(jù)說(shuō)明理由).

查看答案和解析>>

同步練習(xí)冊(cè)答案