如圖,菱形ABCD中,對角線AC,BD交于點(diǎn)0,若AC=6cm,BD=8cm.則菱形ABCD的周長為
20
20
cm.
分析:由菱形對角線互相垂直平分,可得AC⊥BD,BO=4cm,AO=3cm,然后由勾股定理求得邊長,繼而求得答案.
解答:解:四邊形ABCD是菱形,
∴AC⊥BD,BO=OD=
1
2
BD=
1
2
×8=4(cm),AO=OC=
1
2
AC=
1
2
×6=3(cm),
∴AB=
AO2+BO2
=5(cm),
∴菱形的周長為20cm.
故答案為:20.
點(diǎn)評:此題考查了菱形的性質(zhì)以及勾股定理.此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,菱形ABCD中,E,F(xiàn)分別是CB,CD上的點(diǎn),且BE=DF.
(1)求證:AE=AF;
(2)若∠B=60°,點(diǎn)E,F(xiàn)分別為BC和CD的中點(diǎn),求證:△AEF為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,菱形ABCD中,∠A=60°,AB=2,動點(diǎn)P從點(diǎn)B出發(fā),以每秒1個單位長度的速度沿B→C→D向終點(diǎn)D運(yùn)動.同時動點(diǎn)Q從點(diǎn)A出發(fā),以相同的速度沿A→D→B向終點(diǎn)B運(yùn)動,運(yùn)動的時間為x秒,當(dāng)點(diǎn)P到達(dá)點(diǎn)D時,點(diǎn)P、Q同時停止運(yùn)動,設(shè)△APQ的面積為y,則反映y與x的函數(shù)關(guān)系的圖象是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,菱形ABCD中,∠BAD=60°,M是AB的中點(diǎn),P是對角線AC上的一個動點(diǎn),若AB長為2
3
,則PM+PB的最小值是
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖:菱形ABCD中,E是AB的中點(diǎn),且CE⊥AB,AB=6cm.
求:(1)∠BCD的度數(shù);
(2)對角線BD的長;
(3)菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,菱形ABCD中,∠ADC=120°,AB=10,
(1)求BD的長.
(2)求菱形的面積.

查看答案和解析>>

同步練習(xí)冊答案