把不等式組 的解集表示在數(shù)軸上,正確的是   (    )

A.               B.                 C.                D.

D

解析試題分析:不等式組 的解集為,在數(shù)軸上表示的結(jié)果與D中的圖形一致;所以選D
考點(diǎn):數(shù)軸
點(diǎn)評(píng):本題考查數(shù)軸,掌握數(shù)軸的概念,要求考生會(huì)在數(shù)軸上正確的畫(huà)出不等關(guān)系

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)解不等式組:
3-x>0
4x
3
+
3
2
>-
x
6
,并把解集在數(shù)軸上表示出來(lái).
(2)A,B,C三名大學(xué)生競(jìng)選系學(xué)生會(huì)主席,他們的筆試成績(jī)和口試成績(jī)(單位:分)分別用了兩種方式進(jìn)行了統(tǒng)計(jì),如表一和圖一:
精英家教網(wǎng)
①請(qǐng)將表一和圖一中的空缺部分補(bǔ)充完整;
②競(jìng)選的最后一個(gè)程序是由本系的300名學(xué)生進(jìn)行投票,三位候選人的得票情況如圖二(沒(méi)有棄權(quán)票,每名學(xué)生只能推薦一個(gè)),請(qǐng)計(jì)算每人的得票數(shù);
③若每票計(jì)1分,系里將筆試、口試、得票三項(xiàng)測(cè)試得分按4:3:3的比例確定個(gè)人成績(jī),請(qǐng)計(jì)算三位候選人的最后成績(jī),并根據(jù)成績(jī)判斷誰(shuí)能當(dāng)選.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2007•東城區(qū)二模)閱讀理解下列例題:
例題:解一元二次不等式x2-2x-3<0.
分析:求解一元二次不等式時(shí),應(yīng)把它轉(zhuǎn)化成一元一次不等式組求解.
解:把二次三項(xiàng)式x2-2x-3分解因式,得:x2-2x-3=(x-1)2-4=(x-3)(x+1),又x2-2x-3<0,
∴(x-3)(x+1)<0.
由“兩實(shí)數(shù)相乘,同號(hào)得正,異號(hào)得負(fù)”,得
x-3>0
x+1<0
 ①或 
x-3<0
x+1>0
 ②
由①,得不等式組無(wú)解;由②,得-1<x<3.
∴(x-3)(x+1)<0的解集是-1<x<3.
∴原不等式的解集是-1<x<3.
(1)仿照上面的解法解不等式x2+4x-12>0.
(2)汽車在行駛中,由于慣性作用,剎車后還要繼續(xù)向前滑行一段距離才能停住,我們稱這段距離為“剎車距離”,剎車距離是分析事故的一個(gè)重要因素.某車行駛在一個(gè)限速為40千米/時(shí)的彎道上,突然發(fā)現(xiàn)異常,馬上剎車,但是還是與前面的車發(fā)生了追尾,事故后現(xiàn)場(chǎng)測(cè)得此車的剎車距離略超過(guò)10米,我們知道此款車型的剎車距離S(米)與車速x(千米/時(shí))滿足函數(shù)關(guān)系:S=ax2+bx,且剎車距離S(米)與車速x(千米/時(shí))的對(duì)應(yīng)值表如下:
車速x(千米/時(shí)) 30 50 70
剎車距離S(米) 6 15 28
問(wèn)該車是否超速行駛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

閱讀理解下列例題:
例題:解一元二次不等式x2-2x-3<0.
分析:求解一元二次不等式時(shí),應(yīng)把它轉(zhuǎn)化成一元一次不等式組求解.
解:把二次三項(xiàng)式x2-2x-3分解因式,得:x2-2x-3=(x-1)2-4=(x-3)(x+1),又x2-2x-3<0,
∴(x-3)(x+1)<0.
由“兩實(shí)數(shù)相乘,同號(hào)得正,異號(hào)得負(fù)”,得數(shù)學(xué)公式 ①或 數(shù)學(xué)公式
由①,得不等式組無(wú)解;由②,得-1<x<3.
∴(x-3)(x+1)<0的解集是-1<x<3.
∴原不等式的解集是-1<x<3.
(1)仿照上面的解法解不等式x2+4x-12>0.
(2)汽車在行駛中,由于慣性作用,剎車后還要繼續(xù)向前滑行一段距離才能停住,我們稱這段距離為“剎車距離”,剎車距離是分析事故的一個(gè)重要因素.某車行駛在一個(gè)限速為40千米/時(shí)的彎道上,突然發(fā)現(xiàn)異常,馬上剎車,但是還是與前面的車發(fā)生了追尾,事故后現(xiàn)場(chǎng)測(cè)得此車的剎車距離略超過(guò)10米,我們知道此款車型的剎車距離S(米)與車速x(千米/時(shí))滿足函數(shù)關(guān)系:S=ax2+bx,且剎車距離S(米)與車速x(千米/時(shí))的對(duì)應(yīng)值表如下:
車速x(千米/時(shí))305070
剎車距離S(米)61528
問(wèn)該車是否超速行駛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:東城區(qū)二模 題型:解答題

閱讀理解下列例題:
例題:解一元二次不等式x2-2x-3<0.
分析:求解一元二次不等式時(shí),應(yīng)把它轉(zhuǎn)化成一元一次不等式組求解.
把二次三項(xiàng)式x2-2x-3分解因式,得:x2-2x-3=(x-1)2-4=(x-3)(x+1),又x2-2x-3<0,
∴(x-3)(x+1)<0.
由“兩實(shí)數(shù)相乘,同號(hào)得正,異號(hào)得負(fù)”,得
x-3>0
x+1<0
 ①或 
x-3<0
x+1>0
 ②
由①,得不等式組無(wú)解;由②,得-1<x<3.
∴(x-3)(x+1)<0的解集是-1<x<3.
∴原不等式的解集是-1<x<3.
(1)仿照上面的解法解不等式x2+4x-12>0.
(2)汽車在行駛中,由于慣性作用,剎車后還要繼續(xù)向前滑行一段距離才能停住,我們稱這段距離為“剎車距離”,剎車距離是分析事故的一個(gè)重要因素.某車行駛在一個(gè)限速為40千米/時(shí)的彎道上,突然發(fā)現(xiàn)異常,馬上剎車,但是還是與前面的車發(fā)生了追尾,事故后現(xiàn)場(chǎng)測(cè)得此車的剎車距離略超過(guò)10米,我們知道此款車型的剎車距離S(米)與車速x(千米/時(shí))滿足函數(shù)關(guān)系:S=ax2+bx,且剎車距離S(米)與車速x(千米/時(shí))的對(duì)應(yīng)值表如下:
車速x(千米/時(shí)) 30 50 70
剎車距離S(米) 6 15 28
問(wèn)該車是否超速行駛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年北京市東城區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

閱讀理解下列例題:
例題:解一元二次不等式x2-2x-3<0.
分析:求解一元二次不等式時(shí),應(yīng)把它轉(zhuǎn)化成一元一次不等式組求解.
解:把二次三項(xiàng)式x2-2x-3分解因式,得:x2-2x-3=(x-1)2-4=(x-3)(x+1),又x2-2x-3<0,
∴(x-3)(x+1)<0.
由“兩實(shí)數(shù)相乘,同號(hào)得正,異號(hào)得負(fù)”,得 ①或  ②
由①,得不等式組無(wú)解;由②,得-1<x<3.
∴(x-3)(x+1)<0的解集是-1<x<3.
∴原不等式的解集是-1<x<3.
(1)仿照上面的解法解不等式x2+4x-12>0.
(2)汽車在行駛中,由于慣性作用,剎車后還要繼續(xù)向前滑行一段距離才能停住,我們稱這段距離為“剎車距離”,剎車距離是分析事故的一個(gè)重要因素.某車行駛在一個(gè)限速為40千米/時(shí)的彎道上,突然發(fā)現(xiàn)異常,馬上剎車,但是還是與前面的車發(fā)生了追尾,事故后現(xiàn)場(chǎng)測(cè)得此車的剎車距離略超過(guò)10米,我們知道此款車型的剎車距離S(米)與車速x(千米/時(shí))滿足函數(shù)關(guān)系:S=ax2+bx,且剎車距離S(米)與車速x(千米/時(shí))的對(duì)應(yīng)值表如下:
車速x(千米/時(shí))305070
剎車距離S(米)61528
問(wèn)該車是否超速行駛?

查看答案和解析>>

同步練習(xí)冊(cè)答案