(2007•衢州)下列各點中在反比例函數(shù)的圖象上的點是( )
A.(-1,-2)
B.(1,-2)
C.(1,2)
D.(2,1)
【答案】分析:根據(jù)反比例函數(shù)圖象上點的坐標(biāo)的關(guān)系,應(yīng)該滿足函數(shù)解析式,即點的橫縱坐標(biāo)的積等于比例系數(shù)k.把各個點代入檢驗即可.
解答:解:反比例函數(shù)y=,中k=-2,
四個答案中只有B的橫縱坐標(biāo)的積等于-2,
故選B.
點評:本題主要考查反比例函數(shù)圖象上點的坐標(biāo)特征,所有在反比例函數(shù)上的點的橫縱坐標(biāo)的積應(yīng)等于比例系數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年中考復(fù)習(xí)專項訓(xùn)練《閱讀、規(guī)律、代數(shù)式》(解析版) 題型:解答題

(2007•衢州)請閱讀下列材料:
問題:如圖(1),一圓柱的底面半徑、高均為5cm,BC是底面直徑,求一只螞蟻從A點出發(fā)沿圓柱表面爬行到點C的最短路線.小明設(shè)計了兩條路線:
路線1:側(cè)面展開圖中的線段AC.如下圖(2)所示:
設(shè)路線1的長度為l1,則l12=AC2=AB2+2=52+(5π)2=25+25π2
路線2:高線AB+底面直徑BC.如上圖(1)所示:
設(shè)路線2的長度為l2,則l22=(AB+BC)2=(5+10)2=225



l12-l22=25+25π2-225=25π2-200=25(π2-8)>0
∴l(xiāng)12>l22,∴l(xiāng)1>l2
所以要選擇路線2較短.
(1)小明對上述結(jié)論有些疑惑,于是他把條件改成:“圓柱的底面半徑為1cm,高AB為5cm”繼續(xù)按前面的路線進(jìn)行計算.請你幫小明完成下面的計算:
路線1:l12=AC2=______;
路線2:l22=(AB+BC)2=______
∵l12______l22,
∴l(xiāng)1______l2(填>或<)
∴選擇路線______(填1或2)較短.
(2)請你幫小明繼續(xù)研究:在一般情況下,當(dāng)圓柱的底面半徑為r,高為h時,應(yīng)如何選擇上面的兩條路線才能使螞蟻從點A出發(fā)沿圓柱表面爬行到C點的路線最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《圓》(03)(解析版) 題型:選擇題

(2007•衢州)如圖,已知直線l的解析式是y=x-4,并且與x軸、y軸分別交于A、B兩點.一個半徑為1.5的⊙C,圓心C從點(0,1.5)開始以每秒0.5個單位的速度沿著y軸向下運動,當(dāng)⊙C與直線l相切時,則該圓運動的時間為( )

A.3秒或6秒
B.6秒
C.3秒
D.6秒或16秒

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《三角形》(12)(解析版) 題型:解答題

(2007•衢州)請閱讀下列材料:
問題:如圖(1),一圓柱的底面半徑、高均為5cm,BC是底面直徑,求一只螞蟻從A點出發(fā)沿圓柱表面爬行到點C的最短路線.小明設(shè)計了兩條路線:
路線1:側(cè)面展開圖中的線段AC.如下圖(2)所示:
設(shè)路線1的長度為l1,則l12=AC2=AB2+2=52+(5π)2=25+25π2
路線2:高線AB+底面直徑BC.如上圖(1)所示:
設(shè)路線2的長度為l2,則l22=(AB+BC)2=(5+10)2=225



l12-l22=25+25π2-225=25π2-200=25(π2-8)>0
∴l(xiāng)12>l22,∴l(xiāng)1>l2
所以要選擇路線2較短.
(1)小明對上述結(jié)論有些疑惑,于是他把條件改成:“圓柱的底面半徑為1cm,高AB為5cm”繼續(xù)按前面的路線進(jìn)行計算.請你幫小明完成下面的計算:
路線1:l12=AC2=______;
路線2:l22=(AB+BC)2=______
∵l12______l22,
∴l(xiāng)1______l2(填>或<)
∴選擇路線______(填1或2)較短.
(2)請你幫小明繼續(xù)研究:在一般情況下,當(dāng)圓柱的底面半徑為r,高為h時,應(yīng)如何選擇上面的兩條路線才能使螞蟻從點A出發(fā)沿圓柱表面爬行到C點的路線最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:選擇題

(2007•衢州)如圖,已知直線l的解析式是y=x-4,并且與x軸、y軸分別交于A、B兩點.一個半徑為1.5的⊙C,圓心C從點(0,1.5)開始以每秒0.5個單位的速度沿著y軸向下運動,當(dāng)⊙C與直線l相切時,則該圓運動的時間為( )

A.3秒或6秒
B.6秒
C.3秒
D.6秒或16秒

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年河南省中考數(shù)學(xué)模擬試卷(02)(解析版) 題型:解答題

(2007•衢州)請閱讀下列材料:
問題:如圖(1),一圓柱的底面半徑、高均為5cm,BC是底面直徑,求一只螞蟻從A點出發(fā)沿圓柱表面爬行到點C的最短路線.小明設(shè)計了兩條路線:
路線1:側(cè)面展開圖中的線段AC.如下圖(2)所示:
設(shè)路線1的長度為l1,則l12=AC2=AB2+2=52+(5π)2=25+25π2
路線2:高線AB+底面直徑BC.如上圖(1)所示:
設(shè)路線2的長度為l2,則l22=(AB+BC)2=(5+10)2=225



l12-l22=25+25π2-225=25π2-200=25(π2-8)>0
∴l(xiāng)12>l22,∴l(xiāng)1>l2
所以要選擇路線2較短.
(1)小明對上述結(jié)論有些疑惑,于是他把條件改成:“圓柱的底面半徑為1cm,高AB為5cm”繼續(xù)按前面的路線進(jìn)行計算.請你幫小明完成下面的計算:
路線1:l12=AC2=______;
路線2:l22=(AB+BC)2=______
∵l12______l22,
∴l(xiāng)1______l2(填>或<)
∴選擇路線______(填1或2)較短.
(2)請你幫小明繼續(xù)研究:在一般情況下,當(dāng)圓柱的底面半徑為r,高為h時,應(yīng)如何選擇上面的兩條路線才能使螞蟻從點A出發(fā)沿圓柱表面爬行到C點的路線最短.

查看答案和解析>>

同步練習(xí)冊答案