通過(guò)學(xué)習(xí)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做頂角正對(duì)(sad),如圖①,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)sadA=底邊/腰=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.根據(jù)上述角的正對(duì)定義,解下列問(wèn)題:
(1)sad60°=      
(2)對(duì)于0°<A<180°,∠A的正對(duì)值sadA的取值范圍是         
(3)如圖②,已知sinA=,其中∠A為銳角,試求sadA的值.
解:(1)根據(jù)正對(duì)定義,
當(dāng)頂角為60°時(shí),等腰三角形底角為60°,
則三角形為等邊三角形,
則sad60°==1.                 
(2)當(dāng)∠A接近0°時(shí),sadα接近0,
當(dāng)∠A接近180°時(shí),等腰三角形的底接近于腰的二倍,故sadα接近2.
于是sadA的取值范圍是0<sadA<2.          
(3) 如圖,在△ABC中,∠ACB=90°,sin∠A=
在AB上取點(diǎn)D,使AD=AC,作DH⊥AC,H為垂足,

令BC=3k,AB=5k,則AD=AC==4k,            
又在△ADH中,∠AHD=90°,sin∠A=
∴DH=ADsin∠A=k,AH==k.
則在△CDH中,CH=AC﹣AH=k,
CD==k.     
于是在△ACD中,AD=AC=4k,CD=k.
由正對(duì)的定義可得:sadA==,即sadα=. 
(1)根據(jù)等腰三角形的性質(zhì),求出底角的度數(shù),判斷出三角形為等邊三角形,再根據(jù)正對(duì)的定義解答;
(2)求出0度和180度時(shí)等腰三角形底和腰的比即可;
(3)作出直角△ABC,構(gòu)造等腰三角形ACD,根據(jù)正對(duì)的定義解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在一個(gè)廣場(chǎng)上有兩棵樹(shù),一棵高6米,另一棵高2米,兩樹(shù)相距5米.一只小鳥(niǎo)從一棵樹(shù)的樹(shù)梢飛到另一棵樹(shù)的樹(shù)梢,至少飛了       米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,為測(cè)量旗桿AB的高度,在與B距離為8米的C處測(cè)得旗桿頂端A的仰角為56°,那么旗桿的高度約是         米(結(jié)果保留整數(shù)).(參考數(shù)據(jù):sin56°≈0.829,cos56°≈0.559,tan56°≈1.483)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

正方形ABCD的邊長(zhǎng)為1,如果將線段BD繞著點(diǎn)B旋轉(zhuǎn)后,點(diǎn)D落在BC延長(zhǎng)線上的點(diǎn)D1處,那么tan∠BAD1=        

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

中, ,是中線,則(       )
A.B.­C.­D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在△ABC中,AC=3,BC=4,AB=5,則tanB的值是(     )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

Rt△ABC中,∠A=900,BC=4,有一個(gè)內(nèi)角為600,點(diǎn)P是直線AB上不同于A、B的一點(diǎn),且∠ACP=300,則PB的長(zhǎng)為       

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,某游樂(lè)場(chǎng)一山頂滑梯的高為,滑梯的坡角為,那么滑梯長(zhǎng)為:
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案