如圖,⊙O是△ABC的外接圓,AB=AC=10,BC=12,P是上的一個動點(diǎn),過點(diǎn)P作BC的平行線交AB的延長線于點(diǎn)D.

(1)當(dāng)點(diǎn)P在什么位置時,DP是⊙O的切線?請說明理由;

(2)當(dāng)DP為⊙O的切線時,求線段DP的長.

 

 

【答案】

解:(1)當(dāng)點(diǎn)P是的中點(diǎn)時,DP是⊙O的切線。理由如下:

連接AP。

∵AB=AC,∴。

又∵,∴!郟A是⊙O的直徑。

,∴∠1=∠2。

又∵AB=AC,∴PA⊥BC。

又∵DP∥BC,∴DP⊥PA。∴DP是⊙O的切線。

(2)連接OB,設(shè)PA交BC于點(diǎn)E。.

 

 

由垂徑定理,得BE=BC=6。

在Rt△ABE中,由勾股定理,得:AE=。

設(shè)⊙O的半徑為r,則OE=8﹣r,

在Rt△OBE中,由勾股定理,得:r2=62+(8﹣r)2,解得r=。

∵DP∥BC,∴∠ABE=∠D。

又∵∠1=∠1,∴△ABE∽△ADP,

,即,解得:。

【解析】圓心角、弧、弦的關(guān)系,圓周角定理,切線的判定,勾股定理,垂徑定理,相似三角形的判定和性質(zhì)。

【分析】(1)根據(jù)當(dāng)點(diǎn)P是的中點(diǎn)時,得出,得出PA是⊙O的直徑,再利用DP∥BC,得出DP⊥PA,問題得證。

(2)利用切線的性質(zhì),由勾股定理得出半徑長,進(jìn)而得出△ABE∽△ADP,即可得出DP的長。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O是△ABC的外接圓,OD⊥AB于點(diǎn)D、交⊙O于點(diǎn)E,∠C=60°,如果⊙O的半徑為2,那么OD=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖,AD是△ABC的高,且AD平分∠BAC,請指出∠B與∠C的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•雅安)如圖,DE是△ABC的中位線,延長DE至F使EF=DE,連接CF,則S△CEF:S四邊形BCED的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黔東南州)如圖,⊙O是△ABC的外接圓,圓心O在AB上,過點(diǎn)B作⊙O的切線交AC的延長線于點(diǎn)D.
(1)求證:△ABC∽△BDC.
(2)若AC=8,BC=6,求△BDC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,BD是∠ABC的平分線,DE⊥AB于E,S△ABC=90,AB=18,BC=12,求DE的長.

查看答案和解析>>

同步練習(xí)冊答案