已知關于x的方程mx2-(3m-1)x+2m-2=0.
(1)求證:無論m取任何實數(shù)時,方程恒有實數(shù)根;
(2)若關于x的二次函數(shù)y=mx2-(3m-1)x+2m-2的圖象與x軸兩交點間的距離為2時,求拋物線的解析式;
(3)在直角坐標系xoy中,畫出(2)中的函數(shù)圖象,結合圖象回答問題:當直線y=x+b與(2)中的函數(shù)圖象只有兩個交點時,求b的取值范圍.
分析:(1)本題中,二次項系數(shù)m的值不確定,分為m=0,m≠0兩種情況,分別證明方程有實數(shù)根;
(2)設拋物線與x軸兩交點的橫坐標為x1,x2,則兩交點之間距離為|x1-x2|=2,再與根與系數(shù)關系的等式結合變形,可求m的值,從而確定拋物線的解析式;
(3)分三種情況:只與拋物線y1有兩個交點,只與拋物線y2有兩個交點,直線過拋物線y1、y2的交點,觀察圖象,分別求出b的取值范圍.
解答:解:(1)分兩種情況討論.
①當m=0時,方程為x-2=0,x=2.
∴m=0時,方程有實數(shù)根.
②當m≠0時,則一元二次方程的根的判別式
△=[-(3m-1)]2-4m(2m-2)
=9m2-6m+1-8m2+8m=m2+2m+1
=(m+1)2≥0,
∴m≠0時,方程有實數(shù)根.
故無論m取任何實數(shù)時,方程恒有實數(shù)根.
綜合①②可知,m取任何實數(shù),方程mx2-(3m-1)x+2m-2=0恒有實數(shù)根;

(2)設x1,x2為拋物線y=mx2-(3m-1)x+2m-2與x軸交點的橫坐標,
則x1+x2=
3m-1
m
,x1x2=
2m-2
m

由|x1-x2|=
(x1+x2)2-4x1x2

=
9m2-6m+1
m2
-
8m2-8m
m2

=
m2+2m+1
m2

=
(m+1)2
m2

=|
m+1
m
|.
由|x1-x2|=2,得|
m+1
m
|=2,
m+1
m
=2或
m+1
m
=-2.精英家教網(wǎng)
∴m=1或m=-
1
3

∴所求拋物線的解析式為y1=x2-2x,
y2=-
1
3
(x-2)(x-4).
其圖象如右圖所示:

(3)在(2)的條件下y=x+b與拋物線
y1,y2組成的圖象只有兩個交點,結合圖象求b的取值范圍.
y1=x2-2x
y=x+b
,
當y1=y時,得x2-3x-b=0,有△=9+4b=0得b=-
9
4

同理
y2=-
1
3
x2+2x-
8
3
y=x+b
,△=9-4(8+3b)=0,得b=-
23
12

觀察圖象可知,
當b>-
9
4
,或b<-
23
12
直線y=x+b與(2)中的圖象只有兩個交點;
y1=x2-2x
y2=-
1
3
(x-2)(x-4)

當y1=y2時,有x=2或x=1.
當x=1時,y=-1.
所以過兩拋物線交點(1,-1),(2,0)的直線為y=x-2.
綜上所述可知:當b<-
9
4
或b>-
23
12
或b=-2時,
直線y=x+b與(2)中圖象只有兩個交點.
點評:本題具有較強的綜合性,考查了一元二次方程的根的情況,二次函數(shù)與對應的一元二次方程的聯(lián)系,討論一次函數(shù)與二次函數(shù)圖象交點的情況.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知關于x的方程mx+2=2(m-x)的解滿足方程|x-
1
2
|=0,則m的值為( 。
A、
1
2
B、2
C、
3
2
D、3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x的方程mx+2=2(m-x)的解滿足|x-
12
|-1=0,則m的值是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、已知關于x的方程mx+n=0的解是x=-2,則直線y=mx+n與x軸的交點坐標是
(-2,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

4、已知關于x的方程mx+3=2(x-m)的解滿足|x-2|-3=0,則m的值為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x的方程mx+3=x與方程5-2x=1的解相同,求m 的值.

查看答案和解析>>

同步練習冊答案