【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點(diǎn)D,過點(diǎn)D作DE⊥AC于點(diǎn)E.
(1)求證:DE為⊙O的切線;
(2)若AB=4,∠ABC=30°,求陰影部分的面積.
【答案】(1)證明見解析;(2)π+.
【解析】
(1)連接OD,如圖,利用等腰三角形的性質(zhì)和平行線的判定方法證明OD∥AC,則利用DE⊥AC得到OD⊥DE,然后根據(jù)切線的判定方法得到結(jié)論;
(2)過點(diǎn)O作OH⊥BD于H,如圖,利用垂徑定理得到BH=DH,再計(jì)算出∠AOD=60°,OH=1,BH=,然后利用扇形的面積公式,利用陰影部分的面積=S扇形AOD+S△OBD進(jìn)行計(jì)算.
(1)證明:連接OD,如圖,
∵AB=AC,
∴∠B=∠C,
∵OB=OD,
∴∠B=∠ODB,
∴∠ODB=∠C,
∴OD∥AC,
∵DE⊥AC,
∴OD⊥DE,
∴DE為⊙O的切線;
(2)過點(diǎn)O作OH⊥BD于H,如圖,則BH=DH,
∵∠B=∠D=30°,
∴∠AOD=∠B+∠ODB=60°,OH=OB=1,
∴BH=OH=,
∴BD=2BH=2,
∴陰影部分的面積=S扇形AOD+S△OBD
=×2×1
=π+.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】金松科技生態(tài)農(nóng)業(yè)養(yǎng)殖有限公司種植和銷售一種綠色羊肚菌,已知該羊肚菌的成本是12元/千克,規(guī)定銷售價(jià)格不低于成本,又不高于成本的兩倍.經(jīng)過市場調(diào)查發(fā)現(xiàn),某天該羊肚菌的銷售量y(千克)與銷售價(jià)格x(元/千克)的函數(shù)關(guān)系如下圖所示:
(1)求y與x之間的函數(shù)解析式;
(2)求這一天銷售羊肚菌獲得的利潤W的最大值;
(3)若該公司按每銷售一千克提取1元用于捐資助學(xué),且保證每天的銷售利潤不低于3600元,問該羊肚菌銷售價(jià)格該如何確定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(1,0)、C(﹣2,3)兩點(diǎn),與y軸交于點(diǎn)N,其頂點(diǎn)為D.
(1)求拋物線及直線AC的函數(shù)關(guān)系式;
(2)若P是拋物線上位于直線AC上方的一個動點(diǎn),求△APC的面積的最大值及此時點(diǎn)P的坐標(biāo);
(3)在對稱軸上是否存在一點(diǎn)M,使△ANM的周長最。舸嬖,請求出M點(diǎn)的坐標(biāo)和△ANM周長的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,點(diǎn),是第一象限角平分線上的兩點(diǎn),點(diǎn)的縱坐標(biāo)為1,且,在軸上取一點(diǎn),連接,,,,使得四邊形的周長最小,這個最小周長的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為正三角形,BD是角平分線,點(diǎn)F在線段BD上移動,直線CF與AB交于點(diǎn)E,連結(jié)AF,當(dāng)AE=AF時,∠BCE=_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)在第二象限的圖象經(jīng)過點(diǎn)B,且,則k的值 ( )
A.4B.8C.-4D.-8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為A(1,4),與坐標(biāo)軸交于B、C、D三點(diǎn),且B點(diǎn)的坐標(biāo)為(﹣1,0).
(1)求二次函數(shù)的解析式;
(2)在二次函數(shù)圖象位于x軸上方部分有兩個動點(diǎn)M、N,且點(diǎn)N在點(diǎn)M的左側(cè),過M、N作x軸的垂線交x軸于點(diǎn)G、H兩點(diǎn),當(dāng)四邊形MNHG為矩形時,求該矩形周長的最大值;
(3)當(dāng)矩形MNHG的周長最大時,能否在二次函數(shù)圖象上找到一點(diǎn)P,使△PNC的面積是矩形MNHG面積的?若存在,求出該點(diǎn)的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于反比例函數(shù)圖像,下列說法錯誤的是( )
A.其圖象位于第一象限和第三象限
B.其圖象上,在每一象限內(nèi),的值隨的值的增大而減小
C.其圖象關(guān)于原點(diǎn)中心對稱
D.為圖象上任意一點(diǎn),軸于,軸于,則矩形的面積為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解同學(xué)們每月零花錢的數(shù)額,校園小記者隨機(jī)調(diào)查了本校部分同學(xué),根據(jù)調(diào)查結(jié)果,繪制出了如下兩個尚不完整的統(tǒng)計(jì)圖表.
調(diào)查結(jié)果統(tǒng)計(jì)表
組別 | 分組(單位:元) | 人數(shù) |
調(diào)查結(jié)果扇形統(tǒng)計(jì)圖
請根據(jù)以上圖表,解答下列問題:
(1)這次被調(diào)查的同學(xué)共有______人,________,________;
(2)求扇形統(tǒng)計(jì)圖中扇形的圓心角度數(shù);
(3)該校共有人,請估計(jì)每月零花錢的數(shù)額在范圍的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com